File: itkFFTTest.cxx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (440 lines) | stat: -rw-r--r-- 18,665 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/*=========================================================================
  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkFFTTest.cxx,v $
  Language:  C++
  Date:      $Date: 2008-01-05 15:55:00 $
  Version:   $Revision: 1.17 $
  CopyOriginalImageIteratorght (c) 2002 Insight Consortium. All OriginalImageIteratorghts reserved.
  See ITKCopyOriginalImageIteratorght.txt or http://www.itk.org/HTML/CopyOriginalImageIteratorght.htm for details.
     This software is distOriginalImageIteratorbuted WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
  /*This test is build for testing forward and Inverse Fast Fourier Transforms
     using vnl , fftw and scsl fft libraries*/
#include "itkConfigure.h"
#include "itkImage.h"
#include "itkImageRegionIterator.h"
#include "itkVnlFFTRealToComplexConjugateImageFilter.h"
#include "itkVnlFFTComplexConjugateToRealImageFilter.h"
#if defined(USE_FFTWF) || defined(USE_FFTWD)
#include "itkFFTWComplexConjugateToRealImageFilter.h"
#include "itkFFTWRealToComplexConjugateImageFilter.h"
#endif
#ifdef USE_SCSL
#include "itkSCSLComplexConjugateToRealImageFilter.h"
#include "itkSCSLRealToComplexConjugateImageFilter.h"
#endif
#include <itksys/SystemTools.hxx>
#include "vnl/vnl_sample.h"
#include <math.h>
/*test_fft is the test function and it is templated over the pixel , Image dimensions and the  FFT library to be used.*/
template <class TPixel,unsigned int ImageDimensions,
          class R2CType,class C2RType>
int
test_fft(unsigned int *SizeOfDimensions)
{
  typedef itk::Image< TPixel , ImageDimensions > RealImageType;
  typedef itk::Image< std::complex<TPixel> , ImageDimensions > ComplexImageType;
  unsigned int counter = 0;
  typename RealImageType::SizeType imageSize;
  typename RealImageType::IndexType imageIndex;
  /* We are testing the fft for 1d ,2d and 3d images. An array  (SizeOfDimensions) containing the sizes of each dimension is passed as an argument to this function.Based on the template argument ImageDimensions, we create a 1d 2d or 3d image by selecting the sizes of image dimensions from this array .*/
  for(unsigned int i = 0; i < ImageDimensions; i++)
    {
    imageSize.SetElement(i,SizeOfDimensions[i]);
    imageIndex.SetElement(i,0);
    }

  typename RealImageType::RegionType region;
  region.SetSize(imageSize);
  region.SetIndex(imageIndex);
  typename RealImageType::Pointer realimage = RealImageType::New();
  /* Create the Real Image.*/
  realimage->SetLargestPossibleRegion(region);
  realimage->SetBufferedRegion(region);
  realimage->SetRequestedRegion(region);
  realimage->Allocate();
  vnl_sample_reseed(static_cast<int>(itksys::SystemTools::GetTime()/10000.0));
  /*We use 2 region iterators for this test the original image iterator and another iterator for
   the resultant image after performing FFT and IFFT */
  itk::ImageRegionIterator<RealImageType> OriginalImageIterator(realimage,region);

  /*Allocate random pixel values to the image by  iterating through the it and Print out the image data.*/
  try
    {
    while(!OriginalImageIterator.IsAtEnd())
      {
      TPixel val = vnl_sample_uniform(0.0, 16384.0);
      //TPixel val = static_cast<TPixel>(counter);
      if((counter + 1 ) % SizeOfDimensions[0] == 0)
        {
        std::cerr << val << std::endl;
        }
      else
        {
        std::cerr << val << " ";
        }
      counter++;
      OriginalImageIterator.Set(val);
      ++OriginalImageIterator;
      }
    std::cerr << std::endl << std::endl;
    }
  catch(itk::ExceptionObject & ex)
    {
    ex.Print(std::cerr);
    return -1;
    }
  /*Real to complex pointer. This computes the forward FFT*/
  typename R2CType::Pointer R2C = R2CType::New();
  /* complex to Real pointer. This computes the Inverse FFT*/
  typename C2RType::Pointer C2R = C2RType::New();
  /*Set the real image created as the input to the forwar FFT filter*/
  R2C->SetInput(realimage);
  R2C->Update();
  /*Get the size and the pointer to the complex image.*/
  typename ComplexImageType::Pointer complexImage = R2C->GetOutput();
  std::complex<TPixel> *fftbuf = complexImage->GetBufferPointer();
  const typename ComplexImageType::SizeType &complexImageSize =
    complexImage->GetLargestPossibleRegion().GetSize();
  unsigned int _Sizes[3] = { 1,1,1 };
  for(unsigned int i = 0; i < ImageDimensions; i++)
    {
    _Sizes[i] = complexImageSize[i];
    }
  /*Print out the  the frequency domain data obtained after performing the forward transform */
  for(unsigned int i = 0; i < _Sizes[2]; i++)
    {
    unsigned int zStride = i * _Sizes[1] * _Sizes[0];
    for(unsigned int j = 0; j < _Sizes[1]; j++)
      {
      unsigned int yStride = j * _Sizes[0];
      for(unsigned int k = 0; k < _Sizes[0]; k++)
        {
        std::cerr << fftbuf[zStride+yStride+k] << " ";
        }
      std::cerr << std::endl;
      }
    }
  std::cerr << std::endl << std::endl;
  /*Perform the Inverse FFT to get back the Real Image.C@R is the complex conjugate to real image filter and we give the obtained complex image as input to this filter. This is the Inverse FFT of the image.*/
  C2R->SetInput(complexImage);
  //
  // newer method to inform filter that there's an odd # of pixels in the x dimension.
  const bool dimensionIsOdd = SizeOfDimensions[0] & 1;
  C2R->SetActualXDimensionIsOdd( dimensionIsOdd );
  C2R->Update();
  typename RealImageType::Pointer imageafterInverseFFT = C2R->GetOutput();
   /*The Inverse FFT image iterator is the resultant iterator after we
     perform the FFT and Inverse FFT on the Original Image*/
  itk::ImageRegionIterator<RealImageType> InverseFFTImageIterator(imageafterInverseFFT,region);
  counter = 0;
  InverseFFTImageIterator = InverseFFTImageIterator.Begin();
  /*Print the Image data obtained by performing the Inverse FFT. */
  while(!InverseFFTImageIterator.IsAtEnd())
    {
    TPixel val = InverseFFTImageIterator.Value();
    if(counter == imageSize[0])
      {
      std::cerr << val << std::endl;
      counter = 0;
      }
    else
      std::cerr << val << " ";
    counter++;
    ++InverseFFTImageIterator;
    }
  std::cerr << std::endl << std::endl;
  /*Subtract the Original image Pixel Values from the resultant image
   values and test whether they are greater than 0.01 for the test to pass*/
  OriginalImageIterator = OriginalImageIterator.Begin();
  InverseFFTImageIterator = InverseFFTImageIterator.Begin();
  while(!OriginalImageIterator.IsAtEnd())
    {
    TPixel val = OriginalImageIterator.Value();
    TPixel val2 = InverseFFTImageIterator.Value();
    TPixel diff = vnl_math_abs(val-val2);
    if(val != 0)
      {
      diff /= vnl_math_abs(val);
      }
    if(diff > 0.01)
      {
      std::cerr << "Diff found " << val << " " << val2 << " diff " << diff << std::endl;
      return -1;
      }
    ++OriginalImageIterator;
    ++InverseFFTImageIterator;
    }
  std::cerr << std::endl << std::endl;
  return 0;
}
   /*Test FFT using VNL Libraries. The test is performed for 2 3d array one of them
   having the same dimension(4,4,4) and the other having different dimensions (3,4,5).
   Images are created with different dimensions in the test function based on the second template argument    and  the size of these dimensions are taken from the array.
   The data types used are float and double. */
int itkVnlFFTTest(int, char *[])
{
  unsigned int SizeOfDimensions1[] = { 4,4,4 };
  unsigned int SizeOfDimensions2[] = { 3,5,4 };
  int rval = 0;
  std::cerr << "Vnl float,1 (4,4,4)" << std::endl;
  if((test_fft<float,1,
      itk::VnlFFTRealToComplexConjugateImageFilter<float,1> ,
      itk::VnlFFTComplexConjugateToRealImageFilter<float,1> >(SizeOfDimensions1)) != 0)
    {
    rval++;;
    std::cerr << "--------------------- Failed!" << std::endl;
    }
  std::cerr << "Vnl float,2 (4,4,4)"<< std::endl;
  if((test_fft<float,2,
      itk::VnlFFTRealToComplexConjugateImageFilter<float,2> ,
      itk::VnlFFTComplexConjugateToRealImageFilter<float,2> >(SizeOfDimensions1)) != 0)
    {
    std::cerr << "--------------------- Failed!" << std::endl;
    rval++;;
    }
  std::cerr << "Vnl float,3 (4,4,4)"<< std::endl;
  if((test_fft<float,3,
      itk::VnlFFTRealToComplexConjugateImageFilter<float,3> ,
      itk::VnlFFTComplexConjugateToRealImageFilter<float,3> >(SizeOfDimensions1)) != 0)
    {
    std::cerr << "--------------------- Failed!" << std::endl;
    rval++;;
    }
  std::cerr << "Vnl double,1 (4,4,4)"<< std::endl;
  if((test_fft<double,1,
      itk::VnlFFTRealToComplexConjugateImageFilter<double,1> ,
      itk::VnlFFTComplexConjugateToRealImageFilter<double,1> >(SizeOfDimensions1)) != 0)
    {
    std::cerr << "--------------------- Failed!" << std::endl;
    rval++;;
    }
  std::cerr << "Vnl double,2 (4,4,4)"<< std::endl;
  if((test_fft<double,2,
      itk::VnlFFTRealToComplexConjugateImageFilter<double,2> ,
      itk::VnlFFTComplexConjugateToRealImageFilter<double,2> >(SizeOfDimensions1)) != 0)
    {
    std::cerr << "--------------------- Failed!" << std::endl;
    rval++;;
    }
  std::cerr << "Vnl double,3 (4,4,4)"<< std::endl;
  if((test_fft<double,3,
      itk::VnlFFTRealToComplexConjugateImageFilter<double,3> ,
      itk::VnlFFTComplexConjugateToRealImageFilter<double,3> >(SizeOfDimensions1)) != 0)
    {
    std::cerr << "--------------------- Failed!" << std::endl;
    rval++;;
    }
  std::cerr << "Vnl float,1 (3,5,4)" << std::endl;
  if((test_fft<float,1,
      itk::VnlFFTRealToComplexConjugateImageFilter<float,1> ,
      itk::VnlFFTComplexConjugateToRealImageFilter<float,1> >(SizeOfDimensions2)) != 0)
    {
    std::cerr << "--------------------- Failed!" << std::endl;
    rval++;;
    }
  std::cerr << "Vnl float,2 (3,5,4)"<< std::endl;
  if((test_fft<float,2,
      itk::VnlFFTRealToComplexConjugateImageFilter<float,2> ,
      itk::VnlFFTComplexConjugateToRealImageFilter<float,2> >(SizeOfDimensions2)) != 0)
    {
    std::cerr << "--------------------- Failed!" << std::endl;
    rval++;;
    }
  std::cerr << "Vnl float,3 (3,5,4)"<< std::endl;
  if((test_fft<float,3,
      itk::VnlFFTRealToComplexConjugateImageFilter<float,3> ,
      itk::VnlFFTComplexConjugateToRealImageFilter<float,3> >(SizeOfDimensions2)) != 0)
    {
    std::cerr << "--------------------- Failed!" << std::endl;
    rval++;;
    }
  std::cerr << "Vnl double,1 (3,5,4)"<< std::endl;
  if((test_fft<double,1,
      itk::VnlFFTRealToComplexConjugateImageFilter<double,1> ,
      itk::VnlFFTComplexConjugateToRealImageFilter<double,1> >(SizeOfDimensions2)) != 0)
    {
    std::cerr << "--------------------- Failed!" << std::endl;
    rval++;;
    }
  std::cerr << "Vnl double,2 (3,5,4)"<< std::endl;
  if((test_fft<double,2,
      itk::VnlFFTRealToComplexConjugateImageFilter<double,2> ,
      itk::VnlFFTComplexConjugateToRealImageFilter<double,2> >(SizeOfDimensions2)) != 0)
    {
    std::cerr << "--------------------- Failed!" << std::endl;
    rval++;;
    }
  std::cerr << "Vnl double,3 (3,5,4)"<< std::endl;
  if((test_fft<double,3,
      itk::VnlFFTRealToComplexConjugateImageFilter<double,3> ,
      itk::VnlFFTComplexConjugateToRealImageFilter<double,3> >(SizeOfDimensions2)) != 0)
    {
    std::cerr << "--------------------- Failed!" << std::endl;
    rval++;;
    }
  return rval == 0 ? 0 : -1;
}

#if defined(USE_FFTWF)
   /*Test FFT using FFTW Libraries. The test is performed for 2 3d array one of them
   having the same dimension(4,4,4) and the other having different dimensions (3,4,5).
   Images are created with different dimensions in the test function based on the second template argument   and  the size of these dimensions are taken from the array.The data types used are float and double. */
int itkFFTWF_FFTTest(int, char *[])
{
  unsigned int SizeOfDimensions1[] = { 4,4,4 };
  unsigned int SizeOfDimensions2[] = { 3,5,4 };
  int rval = 0;
  std::cerr << "FFTWF:float,1 (4,4,4)" << std::endl;
  if((test_fft<float,1,
      itk::FFTWRealToComplexConjugateImageFilter<float,1> ,
      itk::FFTWComplexConjugateToRealImageFilter<float,1> >(SizeOfDimensions1)) != 0)
    rval++;;
  std::cerr << "FFTWF:float,2 (4,4,4)"<< std::endl;
  if((test_fft<float,2,
      itk::FFTWRealToComplexConjugateImageFilter<float,2> ,
      itk::FFTWComplexConjugateToRealImageFilter<float,2> >(SizeOfDimensions1)) != 0)
    rval++;;
  std::cerr << "FFTWF:float,3 (4,4,4)"<< std::endl;
  if((test_fft<float,3,
      itk::FFTWRealToComplexConjugateImageFilter<float,3> ,
      itk::FFTWComplexConjugateToRealImageFilter<float,3> >(SizeOfDimensions1)) != 0)
    rval++;;
  std::cerr << "FFTWF:float,1 (3,5,4)" << std::endl;
  if((test_fft<float,1,
      itk::FFTWRealToComplexConjugateImageFilter<float,1> ,
      itk::FFTWComplexConjugateToRealImageFilter<float,1> >(SizeOfDimensions2)) != 0)
    rval++;;
  std::cerr << "FFTWF:float,2 (3,5,4)"<< std::endl;
  if((test_fft<float,2,
      itk::FFTWRealToComplexConjugateImageFilter<float,2> ,
      itk::FFTWComplexConjugateToRealImageFilter<float,2> >(SizeOfDimensions2)) != 0)
    rval++;;
  std::cerr << "FFTWF:float,3 (3,5,4)"<< std::endl;
  if((test_fft<float,3,
      itk::FFTWRealToComplexConjugateImageFilter<float,3> ,
      itk::FFTWComplexConjugateToRealImageFilter<float,3> >(SizeOfDimensions2)) != 0)
    rval++;;

  return (rval == 0) ? 0 : -1;
}
#endif
#if defined(USE_FFTWD)
int itkFFTWD_FFTTest(int, char *[])
{
  unsigned int SizeOfDimensions1[] = { 4,4,4 };
  unsigned int SizeOfDimensions2[] = { 3,5,4 };
  int rval = 0;

  std::cerr << "FFTWD:double,1 (4,4,4)"<< std::endl;
  if((test_fft<double,1,
      itk::FFTWRealToComplexConjugateImageFilter<double,1> ,
      itk::FFTWComplexConjugateToRealImageFilter<double,1> >(SizeOfDimensions1)) != 0)
    rval++;;
  std::cerr << "FFTWD:double,2 (4,4,4)"<< std::endl;
  if((test_fft<double,2,
      itk::FFTWRealToComplexConjugateImageFilter<double,2> ,
      itk::FFTWComplexConjugateToRealImageFilter<double,2> >(SizeOfDimensions1)) != 0)
    rval++;;
  std::cerr << "FFTWD:double,3 (4,4,4)"<< std::endl;
  if((test_fft<double,3,
      itk::FFTWRealToComplexConjugateImageFilter<double,3> ,
      itk::FFTWComplexConjugateToRealImageFilter<double,3> >(SizeOfDimensions1)) != 0)
    rval++;;
  std::cerr << "FFTWD:double,1 (3,5,4)"<< std::endl;
  if((test_fft<double,1,
      itk::FFTWRealToComplexConjugateImageFilter<double,1> ,
      itk::FFTWComplexConjugateToRealImageFilter<double,1> >(SizeOfDimensions2)) != 0)
    rval++;;
  std::cerr << "FFTWD:double,2 (3,5,4)"<< std::endl;
  if((test_fft<double,2,
      itk::FFTWRealToComplexConjugateImageFilter<double,2> ,
      itk::FFTWComplexConjugateToRealImageFilter<double,2> >(SizeOfDimensions2)) != 0)
    rval++;;
  std::cerr << "FFTWD:double,3 (3,5,4)"<< std::endl;
  if((test_fft<double,3,
      itk::FFTWRealToComplexConjugateImageFilter<double,3> ,
      itk::FFTWComplexConjugateToRealImageFilter<double,3> >(SizeOfDimensions2)) != 0)
    rval++;;
  return (rval == 0) ? 0 : -1;
}
#endif
#if defined(USE_SCSL)
  /*Test FFT using SCSL Libraries. The test is performed for 2 3d array one of them
   having the same size along all dimension(4,4,4) and the other having different sizes in all dimensions (3,4,5).
   Images are created with different dimensions in the test function based on the second template argument  and  the size of these dimensions are taken from the array. The data types used are float and double. */
int itkSCSLFFTTest(int, char *[])
{
  unsigned int SizeOfDimensions1[] = { 4,4,4 };
  unsigned int SizeOfDimensions2[] = { 3,5,4 };
  int rval = 0;
  std::cerr << "SCSL:float,1 (4,4,4)" << std::endl;
  if((test_fft<float,1,
      itk::SCSLRealToComplexConjugateImageFilter<float,1> ,
      itk::SCSLComplexConjugateToRealImageFilter<float,1> >(SizeOfDimensions1)) != 0)
    rval++;;
  std::cerr << "SCSL:float,2 (4,4,4)"<< std::endl;
  if((test_fft<float,2,
      itk::SCSLRealToComplexConjugateImageFilter<float,2> ,
      itk::SCSLComplexConjugateToRealImageFilter<float,2> >(SizeOfDimensions1)) != 0)
    rval++;;
  std::cerr << "SCSL:float,3 (4,4,4)"<< std::endl;
  if((test_fft<float,3,
      itk::SCSLRealToComplexConjugateImageFilter<float,3> ,
      itk::SCSLComplexConjugateToRealImageFilter<float,3> >(SizeOfDimensions1)) != 0)
    rval++;;
  std::cerr << "SCSL:double,1 (4,4,4)"<< std::endl;
  if((test_fft<double,1,
      itk::SCSLRealToComplexConjugateImageFilter<double,1> ,
      itk::SCSLComplexConjugateToRealImageFilter<double,1> >(SizeOfDimensions1)) != 0)
    rval++;;
  std::cerr << "SCSL:double,2 (4,4,4)"<< std::endl;
  if((test_fft<double,2,
      itk::SCSLRealToComplexConjugateImageFilter<double,2> ,
      itk::SCSLComplexConjugateToRealImageFilter<double,2> >(SizeOfDimensions1)) != 0)
    rval++;;
  std::cerr << "SCSL:double,3 (4,4,4)"<< std::endl;
  if((test_fft<double,3,
      itk::SCSLRealToComplexConjugateImageFilter<double,3> ,
      itk::SCSLComplexConjugateToRealImageFilter<double,3> >(SizeOfDimensions1)) != 0)
    rval++;;
  std::cerr << "SCSL:float,1 (3,5,4)" << std::endl;
  if((test_fft<float,1,
      itk::SCSLRealToComplexConjugateImageFilter<float,1> ,
      itk::SCSLComplexConjugateToRealImageFilter<float,1> >(SizeOfDimensions2)) != 0)
    rval++;;
  std::cerr << "SCSL:float,2 (3,5,4)"<< std::endl;
  if((test_fft<float,2,
      itk::SCSLRealToComplexConjugateImageFilter<float,2> ,
      itk::SCSLComplexConjugateToRealImageFilter<float,2> >(SizeOfDimensions2)) != 0)
    rval++;;
  std::cerr << "SCSL:float,3 (3,5,4)"<< std::endl;
  if((test_fft<float,3,
      itk::SCSLRealToComplexConjugateImageFilter<float,3> ,
      itk::SCSLComplexConjugateToRealImageFilter<float,3> >(SizeOfDimensions2)) != 0)
    rval++;;
  std::cerr << "SCSL:double,1 (3,5,4)"<< std::endl;
  if((test_fft<double,1,
      itk::SCSLRealToComplexConjugateImageFilter<double,1> ,
      itk::SCSLComplexConjugateToRealImageFilter<double,1> >(SizeOfDimensions2)) != 0)
    rval++;;
  std::cerr << "SCSL:double,2 (3,5,4)"<< std::endl;
  if((test_fft<double,2,
      itk::SCSLRealToComplexConjugateImageFilter<double,2> ,
      itk::SCSLComplexConjugateToRealImageFilter<double,2> >(SizeOfDimensions2)) != 0)
    rval++;;
  std::cerr << "SCSL:double,3 (3,5,4)"<< std::endl;
  if((test_fft<double,3,
      itk::SCSLRealToComplexConjugateImageFilter<double,3> ,
      itk::SCSLComplexConjugateToRealImageFilter<double,3> >(SizeOfDimensions2)) != 0)
    rval++;;
  return rval == 0 ? EXIT_SUCCESS : EXIT_FAILURE;
}
#endif