1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkGibbsTest.cxx,v $
Language: C++
Date: $Date: 2008-02-03 04:05:34 $
Version: $Revision: 1.34 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include <iostream>
#include <string>
#include <math.h>
#ifdef _MSC_VER
#pragma warning ( disable : 4786 )
#endif
#include "itkRGBGibbsPriorFilter.h"
#include "itkImageClassifierBase.h"
#include "itkImageGaussianModelEstimator.h"
#include "itkMahalanobisDistanceMembershipFunction.h"
#include "itkMinimumDecisionRule.h"
#include "itkSize.h"
#include "itkImage.h"
#include "itkVector.h"
#include "vnl/vnl_matrix_fixed.h"
#include "itkImageRegionIterator.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkNeighborhood.h"
int itkGibbsTest(int, char*[] )
//int main()
{
std::cout<< "Gibbs Prior Test Begins: " << std::endl;
const unsigned int IMGWIDTH = 20;
const unsigned int IMGHEIGHT = 20;
const unsigned int NFRAMES = 1;
const unsigned int NumberOfBands = 1;
const unsigned int ImageDimension = 3;
const unsigned int NUM_CLASSES = 3;
const unsigned int MAX_NUM_ITER = 1;
const unsigned short TestingImage [400]={
297,277,317,289,300,312,306,283,282,308,308,342,335,325,315,300,304,318,307,308,
319,276,311,282,309,273,308,277,296,313,308,333,322,317,302,330,339,340,325,315,
272,316,296,299,298,310,271,319,315,280,338,342,349,349,330,319,313,314,342,301,
274,274,312,282,277,303,313,300,275,292,341,336,324,310,337,323,322,347,337,305,
296,272,304,304,281,304,302,284,315,270,325,349,337,317,308,332,324,303,334,325,
291,272,289,317,289,310,305,316,292,307,307,343,341,329,309,308,340,323,307,325,
274,286,282,291,270,296,274,288,274,275,341,301,325,333,321,305,347,346,327,317,
282,315,270,314,290,304,297,304,309,290,309,338,341,319,325,344,301,349,328,302,
314,289,296,270,274,277,317,280,278,285,315,347,314,316,307,336,341,335,330,337,
281,291,317,317,302,304,272,277,318,319,305,322,337,334,327,303,321,310,334,314,
321,311,328,326,331,308,325,348,334,346,309,316,308,349,322,349,304,331,304,321,
346,302,344,314,311,338,320,310,331,330,322,323,329,331,342,341,331,336,328,318,
309,336,327,345,312,309,330,334,329,317,324,304,337,330,331,334,340,307,328,343,
345,330,336,302,333,348,315,328,315,308,305,343,342,337,307,316,303,303,332,341,
327,322,320,314,323,325,307,316,336,315,341,347,343,336,315,347,306,303,339,326,
330,347,303,343,332,316,305,325,311,314,345,327,333,305,324,318,324,339,325,319,
334,326,330,319,300,335,305,331,343,324,337,324,319,339,327,317,347,331,308,318,
306,337,347,330,301,316,302,331,306,342,343,329,336,342,300,306,335,330,310,303,
308,331,317,315,318,333,340,340,326,330,339,345,307,331,320,312,306,342,303,321,
328,315,327,311,315,305,340,306,314,339,344,339,337,330,318,342,311,343,311,312
};
typedef itk::Vector<unsigned short,NumberOfBands> PixelType;
typedef itk::Image<PixelType,ImageDimension> VecImageType;
VecImageType::Pointer vecImage = VecImageType::New();
typedef VecImageType::PixelType VecImagePixelType;
VecImageType::SizeType vecImgSize = { {IMGWIDTH , IMGHEIGHT, NFRAMES} };
VecImageType::IndexType index;
index.Fill(0);
VecImageType::RegionType region;
region.SetSize( vecImgSize );
region.SetIndex( index );
vecImage->SetLargestPossibleRegion( region );
vecImage->SetBufferedRegion( region );
vecImage->Allocate();
// setup the iterators
typedef VecImageType::PixelType::VectorType VecPixelType;
enum { VecImageDimension = VecImageType::ImageDimension };
typedef itk::ImageRegionIterator< VecImageType > VecIterator;
VecIterator outIt( vecImage, vecImage->GetBufferedRegion() );
outIt.GoToBegin();
//Set up the vector to store the image data
typedef VecImageType::PixelType DataVector;
DataVector dblVec;
//--------------------------------------------------------------------------
//Manually create and store each vector
//--------------------------------------------------------------------------
//Slice 1
//Vector 1
int i = 0;
while ( !outIt.IsAtEnd() )
{
dblVec[0] = (unsigned short) TestingImage[i];
// dblVec[1] = (unsigned short) TestImage[i+65536];
// dblVec[2] = (unsigned short) TestImage[i+65536*2];
outIt.Set(dblVec);
++outIt;
i++;
}
//---------------------------------------------------------------
//Generate the training data
//---------------------------------------------------------------
typedef itk::Image<unsigned short, ImageDimension > ClassImageType;
ClassImageType::Pointer classImage = ClassImageType::New();
ClassImageType::SizeType classImgSize = {{ IMGWIDTH , IMGHEIGHT, NFRAMES} };
ClassImageType::IndexType classindex;
classindex.Fill(0);
ClassImageType::RegionType classregion;
classregion.SetSize( classImgSize );
classregion.SetIndex( classindex );
classImage->SetLargestPossibleRegion( classregion );
classImage->SetBufferedRegion( classregion );
classImage->Allocate();
// setup the iterators
typedef ClassImageType::PixelType ClassImagePixelType;
typedef itk::ImageRegionIterator<ClassImageType> ClassImageIterator;
ClassImageIterator classoutIt( classImage, classImage->GetBufferedRegion() );
classoutIt.GoToBegin();
//--------------------------------------------------------------------------
//Manually create and store each vector
//--------------------------------------------------------------------------
//Slice 1
//Pixel no. 1
i = 0;
while ( !classoutIt.IsAtEnd() )
{
if ( (i%IMGWIDTH<8) && (i%IMGWIDTH>4) &&
(i/IMGWIDTH<8) && (i/IMGWIDTH>4))
{
classoutIt.Set( 1 );
}
else
{
if ( (i%IMGWIDTH<18) && (i%IMGWIDTH>14) &&
(i/IMGWIDTH<18) && (i/IMGWIDTH>14))
{
classoutIt.Set( 2 );
}
else
{
classoutIt.Set( 0 );
}
}
++classoutIt;
i++;
}
//----------------------------------------------------------------------
// Test code for the supervised classifier algorithm
//----------------------------------------------------------------------
//---------------------------------------------------------------------
// Multiband data is now available in the right format
//---------------------------------------------------------------------
//----------------------------------------------------------------------
//Set membership function (Using the statistics objects)
//----------------------------------------------------------------------
namespace stat = itk::Statistics;
typedef stat::MahalanobisDistanceMembershipFunction< VecImagePixelType >
MembershipFunctionType ;
typedef MembershipFunctionType::Pointer MembershipFunctionPointer ;
typedef std::vector< MembershipFunctionPointer >
MembershipFunctionPointerVector;
//----------------------------------------------------------------------
// Set the image model estimator (train the class models)
//----------------------------------------------------------------------
typedef itk::ImageGaussianModelEstimator<VecImageType,
MembershipFunctionType, ClassImageType>
ImageGaussianModelEstimatorType;
ImageGaussianModelEstimatorType::Pointer
applyEstimateModel = ImageGaussianModelEstimatorType::New();
applyEstimateModel->SetNumberOfModels(NUM_CLASSES);
applyEstimateModel->SetInputImage(vecImage);
applyEstimateModel->SetTrainingImage(classImage);
//Run the gaussian classifier algorithm
applyEstimateModel->Update();
applyEstimateModel->Print(std::cout);
MembershipFunctionPointerVector membershipFunctions =
applyEstimateModel->GetMembershipFunctions();
//----------------------------------------------------------------------
//Set the decision rule
//----------------------------------------------------------------------
typedef itk::DecisionRuleBase::Pointer DecisionRuleBasePointer;
typedef itk::MinimumDecisionRule DecisionRuleType;
DecisionRuleType::Pointer
myDecisionRule = DecisionRuleType::New();
//----------------------------------------------------------------------
// Set the classifier to be used and assigne the parameters for the
// supervised classifier algorithm except the input image which is
// grabbed from the MRF application pipeline.
//----------------------------------------------------------------------
//---------------------------------------------------------------------
typedef VecImagePixelType MeasurementVectorType;
typedef itk::ImageClassifierBase< VecImageType,
ClassImageType > ClassifierType;
typedef itk::ClassifierBase<VecImageType>::Pointer
ClassifierBasePointer;
typedef ClassifierType::Pointer ClassifierPointer;
ClassifierPointer myClassifier = ClassifierType::New();
// Set the Classifier parameters
myClassifier->SetNumberOfClasses(NUM_CLASSES);
// Set the decison rule
myClassifier->
SetDecisionRule((DecisionRuleBasePointer) myDecisionRule );
//Add the membership functions
for( unsigned int ii=0; ii<NUM_CLASSES; ii++ )
{
myClassifier->AddMembershipFunction( membershipFunctions[ii] );
}
//Set the Gibbs Prior labeller
typedef itk::RGBGibbsPriorFilter<VecImageType,ClassImageType> GibbsPriorFilterType;
GibbsPriorFilterType::Pointer applyGibbsImageFilter = GibbsPriorFilterType::New();
// Set the MRF labeller parameters
applyGibbsImageFilter->SetNumberOfClasses(NUM_CLASSES);
applyGibbsImageFilter->SetMaximumNumberOfIterations(MAX_NUM_ITER);
// applyGibbsImageFilter->SetErrorTollerance(0.00);
applyGibbsImageFilter->SetClusterSize(10);
applyGibbsImageFilter->SetBoundaryGradient(6);
applyGibbsImageFilter->SetObjectLabel(1);
// applyGibbsImageFilter->SetRecursiveNumber(1);
applyGibbsImageFilter->SetCliqueWeight_1(5.0);
applyGibbsImageFilter->SetCliqueWeight_2(5.0);
applyGibbsImageFilter->SetCliqueWeight_3(5.0);
applyGibbsImageFilter->SetCliqueWeight_4(5.0);
applyGibbsImageFilter->SetCliqueWeight_5(5.0);
applyGibbsImageFilter->SetCliqueWeight_6(0.0);
applyGibbsImageFilter->SetInput(vecImage);
applyGibbsImageFilter->SetClassifier( myClassifier );
applyGibbsImageFilter->SetObjectThreshold(5.0);
/** coverage */
std::cout << applyGibbsImageFilter->GetNumberOfClasses() << std::endl;
std::cout << applyGibbsImageFilter->GetMaximumNumberOfIterations() << std::endl;
/** coverage */
std::cout << applyGibbsImageFilter->GetCliqueWeight_1() << std::endl;
std::cout << applyGibbsImageFilter->GetCliqueWeight_2() << std::endl;
std::cout << applyGibbsImageFilter->GetCliqueWeight_3() << std::endl;
std::cout << applyGibbsImageFilter->GetCliqueWeight_4() << std::endl;
std::cout << applyGibbsImageFilter->GetCliqueWeight_5() << std::endl;
std::cout << applyGibbsImageFilter->GetCliqueWeight_6() << std::endl;
//Since a suvervised classifier is used, it requires a training image
applyGibbsImageFilter->SetTrainingImage(classImage);
//Kick off the Gibbs labeller function
applyGibbsImageFilter->Update();
std::cout << "applyGibbsImageFilter: " << applyGibbsImageFilter;
ClassImageType::Pointer outClassImage = applyGibbsImageFilter->GetOutput();
//Print the mrf labelled image
ClassImageIterator labeloutIt( outClassImage, outClassImage->GetBufferedRegion() );
int j0 = 0;
int j1 = 0;
while ( !labeloutIt.IsAtEnd() )
{
if (labeloutIt.Get() == 0)
{
j0++;
}
if (labeloutIt.Get() == 1)
{
j1++;
}
++labeloutIt;
}
std::cout<< "j0:" << j0 << std::endl;
std::cout<< "j1:" << j1 << std::endl;
// FILE *output=fopen("new.raw", "wb");
// fwrite(outImage, 2, IMGWIDTH*IMGHEIGHT, output);
// fclose(output);
//Verify if the results were as per expectation
bool passTest;
/* int j = 0;
i = 0;
labeloutIt.GoToBegin();
while ( !labeloutIt.IsAtEnd() ) {
if ((i%IMGWIDTH<10) && (i/IMGWIDTH<10) && (labeloutIt.Get()==1))
j++;
i++;
++labeloutIt;
}
*/
passTest = ((j1 > 285) && (j1 < 315));
if( passTest )
{
std::cout<< "Gibbs Prior Test Passed" << std::endl;
}
else
{
std::cout<< "Gibbs Prior Test failed" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|