File: itkGradientDifferenceImageToImageMetricTest.cxx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (156 lines) | stat: -rwxr-xr-x 5,400 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkGradientDifferenceImageToImageMetricTest.cxx,v $
  Language:  C++
  Date:      $Date: 2005-12-01 18:43:07 $
  Version:   $Revision: 1.4 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

#include "itkGradientDifferenceImageToImageMetric.h"
#include "itkGaussianImageSource.h"
#include "itkImage.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkMeanSquaresHistogramImageToImageMetric.h"
#include "itkTranslationTransform.h"


int itkGradientDifferenceImageToImageMetricTest(int , char*[] )
{
  // Create two simple images.
  const unsigned int ImageDimension = 2;
  typedef double PixelType;
  typedef double CoordinateRepresentationType;
    
  //Allocate Images
  typedef itk::Image<PixelType,ImageDimension> MovingImageType;
  typedef itk::Image<PixelType,ImageDimension> FixedImageType;
    
  // Declare Gaussian Sources
  typedef itk::GaussianImageSource<MovingImageType> MovingImageSourceType;
  typedef itk::GaussianImageSource<FixedImageType> FixedImageSourceType;
  typedef MovingImageSourceType::Pointer MovingImageSourcePointer;
  typedef FixedImageSourceType::Pointer FixedImageSourcePointer;
    
  // Note: the following declarations are classical arrays
  unsigned long fixedImageSize[] = {100,  100};
  unsigned long movingImageSize[] = {100,  100}; 
    
  float fixedImageSpacing[]  = {1.0f, 1.0f}; 
  float movingImageSpacing[] = {1.0f, 1.0f}; 
    
  float fixedImageOrigin[] = {0.0f, 0.0f}; 
  float movingImageOrigin[] = {0.0f, 0.0f}; 
    
  MovingImageSourceType::Pointer movingImageSource =
    MovingImageSourceType::New();
  FixedImageSourceType::Pointer  fixedImageSource  =
    FixedImageSourceType::New();
    
  movingImageSource->SetSize(movingImageSize);
  movingImageSource->SetOrigin(movingImageOrigin);
  movingImageSource->SetSpacing(movingImageSpacing);
  movingImageSource->SetNormalized(false);
  movingImageSource->SetScale(200.0f);
    
  fixedImageSource->SetSize(fixedImageSize);
  fixedImageSource->SetOrigin(fixedImageOrigin);
  fixedImageSource->SetSpacing(fixedImageSpacing);
  fixedImageSource->SetNormalized(false);
  fixedImageSource->SetScale(200.0f);
    
  movingImageSource->Update(); // Force the filter to run
  fixedImageSource->Update();  // Force the filter to run
    
  MovingImageType::Pointer movingImage = movingImageSource->GetOutput();
  FixedImageType::Pointer  fixedImage  = fixedImageSource->GetOutput();
    
  // Set up the metric.
  typedef itk::GradientDifferenceImageToImageMetric<
                                            FixedImageType,
                                            MovingImageType> MetricType;
    
  typedef MetricType::TransformType TransformBaseType;
  typedef MetricType::DerivativeType DerivativeType;
  typedef TransformBaseType::ParametersType ParametersType;
    
  MetricType::Pointer metric = MetricType::New();
    
  // Plug the images into the metric.
  metric->SetFixedImage(fixedImage);
  metric->SetMovingImage(movingImage);

  // Set up a transform.
  typedef itk::TranslationTransform<CoordinateRepresentationType,
    ImageDimension> TransformType;
    
  TransformType::Pointer transform = TransformType::New();
  metric->SetTransform(transform.GetPointer());
    
  // Set up an interpolator.
  typedef itk::LinearInterpolateImageFunction<MovingImageType,
    double> InterpolatorType;
    
  InterpolatorType::Pointer interpolator = InterpolatorType::New();
  interpolator->SetInputImage(movingImage.GetPointer());
  metric->SetInterpolator(interpolator.GetPointer());
    
  // Define the region over which the metric will be computed.
  metric->SetFixedImageRegion(fixedImage->GetBufferedRegion());

  // Set up transform parameters.
  const unsigned int numberOfParameters = transform->GetNumberOfParameters();

  ParametersType parameters( numberOfParameters );
  for (unsigned int k = 0; k < numberOfParameters; k++)
    {
    parameters[k] = 0.0;
    }


  try
    {
    // Initialize the metric.
    metric->Initialize();

    // Do some work
    DerivativeType derivatives( numberOfParameters );
    MetricType::MeasureType value;
    for (double y = -10.0; y <= 10.0; y += 5.0)
      {
      parameters[1] = y;
      for (double x = -10.0; x <= 10.0; x += 5.0)
        {
        parameters[0] = x;
        metric->GetValueAndDerivative (parameters, value, derivatives);
        std::cout << "Parameters: " << parameters
                  << ", Value: " << value 
                  << ", Derivatives: " << derivatives << std::endl;
        }
      }

    // Exercise Print() method.
    metric->Print(std::cout);

    std::cout << "Test passed." << std::endl;
    }
  catch (itk::ExceptionObject& ex)
    {
    std::cerr << "Exception caught!" << std::endl;
    std::cerr << ex << std::endl;
    return EXIT_FAILURE;
    }

  return EXIT_SUCCESS;
}