1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit (ITK)
Module: $RCSfile: itkHistogramMatchingImageFilterTest.cxx,v $
Language: C++
Date: $Date: 2003-09-10 14:30:03 $
Version: $Revision: 1.7 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkHistogramMatchingImageFilter.h"
#include "itkImage.h"
#include "itkImageRegionIterator.h"
#include "itkCommand.h"
/**
* This file tests the functionality of the HistogramMatchingImageFilter.
* This test uses artificial data, where we multiply different intensity
* classes by different factors and test whether we can recover the
* reference image.
*/
double refPattern( unsigned long offset )
{
if ( offset < 40 ) { return 5.0; }
if ( offset < 160 ) { return 10.0; }
if ( offset < 200 ) { return 15.0; }
if ( offset < 320 ) { return 20.0; }
return 0.0;
}
double srcPattern( unsigned long offset )
{
if ( offset < 40 ) { return 5.0 * 1.5; }
if ( offset < 160 ) { return 10.0 * 0.9; }
if ( offset < 200 ) { return 15.0 * 1.0; }
if ( offset < 320 ) { return 20.0 * 0.8; }
return 0.0;
}
namespace
{
// The following classe is used to support callbacks
// on the filter in the pipeline that follows later
class ShowProgressObject
{
public:
ShowProgressObject(itk::ProcessObject* o)
{m_Process = o;}
void ShowProgress()
{std::cout << "Progress " << m_Process->GetProgress() << std::endl;}
itk::ProcessObject::Pointer m_Process;
};
}
int itkHistogramMatchingImageFilterTest(int, char* [] )
{
typedef float PixelType;
enum {ImageDimension = 3};
typedef itk::Image<PixelType,ImageDimension> ImageType;
typedef itk::ImageRegionIterator<ImageType> Iterator;
ImageType::SizeType size;
size[0] = 30;
size[1] = 20;
size[2] = 2;
ImageType::RegionType region;
region.SetSize( size );
ImageType::Pointer reference = ImageType::New();
ImageType::Pointer source = ImageType::New();
reference->SetLargestPossibleRegion( region );
reference->SetBufferedRegion( region );
reference->Allocate();
source->SetLargestPossibleRegion( region );
source->SetBufferedRegion( region );
source->Allocate();
Iterator refIter( reference, region );
Iterator srcIter( source, region );
unsigned long counter = 0;
while ( !refIter.IsAtEnd() )
{
refIter.Set( static_cast<PixelType>( refPattern( counter ) ) );
srcIter.Set( static_cast<PixelType>( srcPattern( counter ) ) );
++refIter;
++srcIter;
++counter;
}
typedef itk::HistogramMatchingImageFilter<ImageType,ImageType> FilterType;
FilterType::Pointer filter = FilterType::New();
filter->SetReferenceImage( reference );
filter->SetSourceImage( source );
filter->SetNumberOfHistogramLevels( 50 );
filter->SetNumberOfMatchPoints( 8 );
filter->ThresholdAtMeanIntensityOn();
ShowProgressObject progressWatch(filter);
itk::SimpleMemberCommand<ShowProgressObject>::Pointer command;
command = itk::SimpleMemberCommand<ShowProgressObject>::New();
command->SetCallbackFunction(&progressWatch,
&ShowProgressObject::ShowProgress);
filter->AddObserver(itk::ProgressEvent(), command);
filter->Update();
filter->Print( std::cout );
// Walk the output and compare with reference
Iterator outIter( filter->GetOutput(), region );
refIter.GoToBegin();
bool passed = true;
while( !outIter.IsAtEnd() )
{
PixelType diff = refIter.Get() - outIter.Get();
if ( vnl_math_abs( diff ) > 1 )
{
passed = false;
std::cout << "Test failed at: " << outIter.GetIndex() << " ";
std::cout << "Output value: " << outIter.Get() << " ";
std::cout << "Ref value: " << refIter.Get() << std::endl;
}
++outIter;
++refIter;
}
// Exercise auxiliary functions
std::cout << "Exercise auxiliary functions" << std::endl;
std::cout << filter->GetNumberOfHistogramLevels() << std::endl;
std::cout << filter->GetNumberOfMatchPoints() << std::endl;
std::cout << "Source Histogram: " <<
filter->GetSourceHistogram() << std::endl;
std::cout << "Reference Histogram: " <<
filter->GetReferenceHistogram() << std::endl;
std::cout << "Output Histogram: " <<
filter->GetOutputHistogram() << std::endl;
std::cout << "Threshold At Mean Intensity? ";
std::cout << filter->GetThresholdAtMeanIntensity() << std::endl;
filter->ThresholdAtMeanIntensityOff();
filter->Update();
filter->Print( std::cout );
if ( !passed )
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|