1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkImagePCAShapeModelEstimatorTest.cxx,v $
Language: C++
Date: $Date: 2008-02-03 04:05:34 $
Version: $Revision: 1.11 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
// Insight classes
#include "itkImage.h"
#include "itkVector.h"
#include "vnl/vnl_matrix_fixed.h"
#include "vnl/vnl_math.h"
#include "itkImageRegionIterator.h"
#include "itkLightProcessObject.h"
#include "itkTextOutput.h"
#include "itkImagePCAShapeModelEstimator.h"
//Data definitions
#define IMGWIDTH 2
#define IMGHEIGHT 2
#define NDIMENSION 2
#define NUMTRAINIMAGES 3
#define NUMLARGESTPC 2
// class to support progress feeback
class ShowProgressObject
{
public:
ShowProgressObject(itk::LightProcessObject * o)
{m_Process = o;}
void ShowProgress()
{std::cout << "Progress " << m_Process->GetProgress() << std::endl;}
itk::LightProcessObject::Pointer m_Process;
};
int itkImagePCAShapeModelEstimatorTest(int, char* [] )
{
itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());
//------------------------------------------------------
//Create 3 simple test images with
//------------------------------------------------------
typedef itk::Image<double,NDIMENSION> InputImageType;
typedef itk::Image<double,NDIMENSION> OutputImageType;
typedef itk::Image<double,NDIMENSION> MeanImageType;
typedef InputImageType::PixelType ImagePixelType;
typedef InputImageType::PixelType InputImagePixelType;
typedef
itk::ImageRegionIterator< InputImageType > InputImageIterator;
typedef
itk::ImageRegionIterator< OutputImageType > OutputImageIterator;
InputImageType::Pointer image1 = InputImageType::New();
InputImageType::Pointer image2 = InputImageType::New();
InputImageType::Pointer image3 = InputImageType::New();
InputImageType::SizeType inputImageSize = {{ IMGWIDTH, IMGHEIGHT }};
InputImageType::IndexType index;
index.Fill(0);
InputImageType::RegionType region;
region.SetSize( inputImageSize );
region.SetIndex( index );
//--------------------------------------------------------------------------
// Set up Image 1 first
//--------------------------------------------------------------------------
image1->SetLargestPossibleRegion( region );
image1->SetBufferedRegion( region );
image1->Allocate();
// setup the iterators
InputImageIterator image1It( image1, image1->GetBufferedRegion() );
//--------------------------------------------------------------------------
// Set up Image 2 first
//--------------------------------------------------------------------------
image2->SetLargestPossibleRegion( region );
image2->SetBufferedRegion( region );
image2->Allocate();
// setup the iterators
InputImageIterator image2It( image2, image2->GetBufferedRegion() );
//--------------------------------------------------------------------------
// Set up Image 3 first
//--------------------------------------------------------------------------
image3->SetLargestPossibleRegion( region );
image3->SetBufferedRegion( region );
image3->Allocate();
// setup the iterators
InputImageIterator image3It( image3, image3->GetBufferedRegion() );
//--------------------------------------------------------------------------
//Manually create and store each vector
//--------------------------------------------------------------------------
//Image no. 1
for( int i = 0; i< 4; i++ )
{
image1It.Set( 1 ); ++image1It;
}
//Image no. 2
image2It.Set( 2 ); ++image2It;
image2It.Set( 0 ); ++image2It;
image2It.Set( 0 ); ++image2It;
image2It.Set( 2 ); ++image2It;
//Image no. 3
image3It.Set( 0 ); ++image3It;
image3It.Set( 3 ); ++image3It;
image3It.Set( 3 ); ++image3It;
image3It.Set( 0 ); ++image3It;
//----------------------------------------------------------------------
// Test code for the Shape model estimator
//----------------------------------------------------------------------
//----------------------------------------------------------------------
//Set the image model estimator
//----------------------------------------------------------------------
typedef itk::ImagePCAShapeModelEstimator<InputImageType, OutputImageType>
ImagePCAShapeModelEstimatorType;
ImagePCAShapeModelEstimatorType::Pointer
applyPCAShapeEstimator = ImagePCAShapeModelEstimatorType::New();
//----------------------------------------------------------------------
//Set the parameters of the clusterer
//----------------------------------------------------------------------
applyPCAShapeEstimator->SetNumberOfTrainingImages( NUMTRAINIMAGES );
applyPCAShapeEstimator->SetNumberOfPrincipalComponentsRequired( NUMLARGESTPC + 1 );
applyPCAShapeEstimator->SetNumberOfPrincipalComponentsRequired( NUMLARGESTPC );
applyPCAShapeEstimator->SetInput(0, image1);
applyPCAShapeEstimator->SetInput(1, image2);
applyPCAShapeEstimator->SetInput(2, image3);
applyPCAShapeEstimator->Update();
//Test the printself function to increase coverage
applyPCAShapeEstimator->Print(std::cout);
//Exercise TypeMacro in superclass
typedef ImagePCAShapeModelEstimatorType::Superclass GenericEstimatorType;
std::cout << applyPCAShapeEstimator->GenericEstimatorType::GetNameOfClass() << std::endl;
//Print out the number of training images and the number of principal
//components
std::cout << "The number of training images are: " <<
applyPCAShapeEstimator->GetNumberOfTrainingImages() << std::endl;
std::cout << "The number of principal components desired are: " <<
applyPCAShapeEstimator->GetNumberOfPrincipalComponentsRequired() << std::endl;
//Print the eigen vectors
vnl_vector<double> eigenValues =
applyPCAShapeEstimator->GetEigenValues();
unsigned int numEigVal = eigenValues.size();
std::cout << "Number of returned eign-values: " << numEigVal << std::endl;
std::cout << "The " <<
applyPCAShapeEstimator->GetNumberOfPrincipalComponentsRequired() <<
" largest eigen values are:" << std::endl;
for(unsigned int i= 0; i< vnl_math_min( numEigVal, (unsigned int)NUMLARGESTPC ); i++ )
{
std::cout << eigenValues[ i ] << std::endl;
}
std::cout << "" << std::endl;
std::cout << "" << std::endl;
//Print the MeanImage
OutputImageType::Pointer outImage = applyPCAShapeEstimator->GetOutput( 0 );
OutputImageIterator outImageIt( outImage, outImage->GetBufferedRegion() );
outImageIt.GoToBegin();
std::cout << "The mean image is:" << std::endl;
while(!outImageIt.IsAtEnd() )
{
std::cout << (double)(outImageIt.Get()) << ";" << std::endl;
++outImageIt;
}
std::cout << " " << std::endl;
//Print the largest two eigen vectors
for (unsigned int j=1; j< NUMLARGESTPC + 1; j++ )
{
OutputImageType::Pointer outImage2 = applyPCAShapeEstimator->GetOutput( j );
OutputImageIterator outImage2It( outImage2, outImage2->GetBufferedRegion() );
outImage2It.GoToBegin();
std::cout << "" << std::endl;
std::cout << "The eigen vector number: " << j << " is:" << std::endl;
while(!outImage2It.IsAtEnd() )
{
std::cout << (double) (outImage2It.Get()) << ";" << std::endl;
++outImage2It;
}
std::cout << " " << std::endl;
}
//Test for the eigen values for the test case precomputed using Matlab/Splus
std::cout << "" << std::endl;
if( (eigenValues[2] < 6 || eigenValues[2] > 6.1) || (eigenValues[1] >0.1) )
{
std::cout<< "Test Passed" << std::endl;
}
else
{
std::cout<< "Test failed" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|