File: itkImagePCAShapeModelEstimatorTest.cxx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (246 lines) | stat: -rw-r--r-- 8,283 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkImagePCAShapeModelEstimatorTest.cxx,v $
  Language:  C++
  Date:      $Date: 2008-02-03 04:05:34 $
  Version:   $Revision: 1.11 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
// Insight classes
#include "itkImage.h"
#include "itkVector.h"
#include "vnl/vnl_matrix_fixed.h"
#include "vnl/vnl_math.h"
#include "itkImageRegionIterator.h"
#include "itkLightProcessObject.h"
#include "itkTextOutput.h"

#include "itkImagePCAShapeModelEstimator.h"

//Data definitions 
#define   IMGWIDTH            2
#define   IMGHEIGHT           2
#define   NDIMENSION          2
#define   NUMTRAINIMAGES      3
#define   NUMLARGESTPC        2

// class to support progress feeback


class ShowProgressObject
{
public:
  ShowProgressObject(itk::LightProcessObject * o)
    {m_Process = o;}
  void ShowProgress()
    {std::cout << "Progress " << m_Process->GetProgress() << std::endl;}
  itk::LightProcessObject::Pointer m_Process;
};


int itkImagePCAShapeModelEstimatorTest(int, char* [] )
{

  itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());

  //------------------------------------------------------
  //Create 3 simple test images with
  //------------------------------------------------------
  typedef itk::Image<double,NDIMENSION> InputImageType; 
  typedef itk::Image<double,NDIMENSION> OutputImageType; 
  typedef itk::Image<double,NDIMENSION> MeanImageType;


  typedef InputImageType::PixelType ImagePixelType;

  typedef InputImageType::PixelType InputImagePixelType;

  typedef
    itk::ImageRegionIterator< InputImageType > InputImageIterator;

  typedef
    itk::ImageRegionIterator< OutputImageType > OutputImageIterator;
  
  InputImageType::Pointer image1 = InputImageType::New();

  InputImageType::Pointer image2 = InputImageType::New();

  InputImageType::Pointer image3 = InputImageType::New();

  InputImageType::SizeType inputImageSize = {{ IMGWIDTH, IMGHEIGHT }};

  InputImageType::IndexType index;
  index.Fill(0);
  InputImageType::RegionType region;

  region.SetSize( inputImageSize );
  region.SetIndex( index );

  //--------------------------------------------------------------------------
  // Set up Image 1 first
  //--------------------------------------------------------------------------

  image1->SetLargestPossibleRegion( region );
  image1->SetBufferedRegion( region );
  image1->Allocate();

  // setup the iterators
  InputImageIterator image1It( image1, image1->GetBufferedRegion() );

  //--------------------------------------------------------------------------
  // Set up Image 2 first
  //--------------------------------------------------------------------------

  image2->SetLargestPossibleRegion( region );
  image2->SetBufferedRegion( region );
  image2->Allocate();

  // setup the iterators
  InputImageIterator image2It( image2, image2->GetBufferedRegion() );

  //--------------------------------------------------------------------------
  // Set up Image 3 first
  //--------------------------------------------------------------------------

  image3->SetLargestPossibleRegion( region );
  image3->SetBufferedRegion( region );
  image3->Allocate();

  // setup the iterators
  InputImageIterator image3It( image3, image3->GetBufferedRegion() );

  //--------------------------------------------------------------------------
  //Manually create and store each vector
  //--------------------------------------------------------------------------
  //Image no. 1
  for( int i = 0; i< 4; i++ )
    {
    image1It.Set( 1 ); ++image1It;
    }
  //Image no. 2
  image2It.Set( 2 ); ++image2It;
  image2It.Set( 0 ); ++image2It;
  image2It.Set( 0 ); ++image2It;
  image2It.Set( 2 ); ++image2It;

  //Image no. 3
  image3It.Set( 0 ); ++image3It;
  image3It.Set( 3 ); ++image3It;
  image3It.Set( 3 ); ++image3It;
  image3It.Set( 0 ); ++image3It;

  //----------------------------------------------------------------------
  // Test code for the Shape model estimator
  //----------------------------------------------------------------------

  //----------------------------------------------------------------------
  //Set the image model estimator
  //----------------------------------------------------------------------
  typedef itk::ImagePCAShapeModelEstimator<InputImageType, OutputImageType> 
    ImagePCAShapeModelEstimatorType;

  ImagePCAShapeModelEstimatorType::Pointer 
    applyPCAShapeEstimator = ImagePCAShapeModelEstimatorType::New();

  //----------------------------------------------------------------------
  //Set the parameters of the clusterer
  //----------------------------------------------------------------------
  applyPCAShapeEstimator->SetNumberOfTrainingImages( NUMTRAINIMAGES );
  applyPCAShapeEstimator->SetNumberOfPrincipalComponentsRequired( NUMLARGESTPC + 1 );
  applyPCAShapeEstimator->SetNumberOfPrincipalComponentsRequired( NUMLARGESTPC );
  applyPCAShapeEstimator->SetInput(0, image1);
  applyPCAShapeEstimator->SetInput(1, image2);
  applyPCAShapeEstimator->SetInput(2, image3);

  applyPCAShapeEstimator->Update();

  //Test the printself function to increase coverage
  applyPCAShapeEstimator->Print(std::cout);

  //Exercise TypeMacro in superclass
  typedef ImagePCAShapeModelEstimatorType::Superclass GenericEstimatorType;
  std::cout << applyPCAShapeEstimator->GenericEstimatorType::GetNameOfClass() << std::endl;

  //Print out the number of training images and the number of principal 
  //components
  std::cout << "The number of training images are: " <<
    applyPCAShapeEstimator->GetNumberOfTrainingImages() << std::endl;

  std::cout << "The number of principal components desired are: " <<
    applyPCAShapeEstimator->GetNumberOfPrincipalComponentsRequired() << std::endl;

  //Print the eigen vectors
  vnl_vector<double> eigenValues = 
    applyPCAShapeEstimator->GetEigenValues();
  unsigned int numEigVal =  eigenValues.size();
  std::cout << "Number of returned eign-values: " << numEigVal << std::endl;

  std::cout << "The " << 
    applyPCAShapeEstimator->GetNumberOfPrincipalComponentsRequired() << 
    " largest eigen values are:" << std::endl;

  for(unsigned int i= 0; i< vnl_math_min( numEigVal, (unsigned int)NUMLARGESTPC ); i++ )
    {
    std::cout << eigenValues[ i ] << std::endl; 
    }  
  std::cout << "" << std::endl;
  std::cout << "" << std::endl;

  
  //Print the MeanImage
  OutputImageType::Pointer outImage = applyPCAShapeEstimator->GetOutput( 0 );
  OutputImageIterator outImageIt( outImage, outImage->GetBufferedRegion() );
  outImageIt.GoToBegin();

  std::cout << "The mean image is:" << std::endl;
  while(!outImageIt.IsAtEnd() )
    {
    std::cout << (double)(outImageIt.Get()) << ";"  << std::endl;  
    ++outImageIt; 
    } 
  std::cout << "  " << std::endl;

  //Print the largest two eigen vectors
  for (unsigned int j=1; j< NUMLARGESTPC + 1; j++ )
    {
    OutputImageType::Pointer outImage2 = applyPCAShapeEstimator->GetOutput( j );
    OutputImageIterator outImage2It( outImage2, outImage2->GetBufferedRegion() );
    outImage2It.GoToBegin();

    std::cout << "" << std::endl;
    std::cout << "The eigen vector number: " << j << " is:" << std::endl;
    while(!outImage2It.IsAtEnd() )
      {
      std::cout << (double) (outImage2It.Get()) << ";"  << std::endl;  
      ++outImage2It; 
      } 
    std::cout << "  " << std::endl;

    }

  //Test for the eigen values for the test case precomputed using Matlab/Splus
  std::cout << "" << std::endl;
  if( (eigenValues[2] < 6 || eigenValues[2] > 6.1) || (eigenValues[1] >0.1) )
    {
    std::cout<< "Test Passed" << std::endl;
    }
  else
    {
    std::cout<< "Test failed" << std::endl;
    return EXIT_FAILURE;
    }


  return EXIT_SUCCESS;
}