1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkImageRegistrationMethodTest_16.cxx,v $
Language: C++
Date: $Date: 2006-06-07 02:58:00 $
Version: $Revision: 1.10 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#ifdef _MSC_VER
#define ITK_LEAN_AND_MEAN
#endif
#include "itkImageRegistrationMethod.h"
#include "itkAffineTransform.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkGradientDescentOptimizer.h"
#include "itkMeanSquaresImageToImageMetric.h"
#include "itkCommandIterationUpdate.h"
#include "itkImageRegistrationMethodImageSource.h"
/**
* This program tests one instantiation of the itk::ImageRegistrationMethod class
*
*
*/
template<class DataType>
bool DoRegistration ()
{
bool pass = true;
const unsigned int dimension = 2;
// Fixed Image Type
typedef itk::Image<DataType,dimension> FixedImageType;
// Moving Image Type
typedef itk::Image<DataType,dimension> MovingImageType;
// Size Type
typedef typename MovingImageType::SizeType SizeType;
// Transform Type
typedef itk::AffineTransform< double, dimension > TransformType;
typedef typename TransformType::ParametersType ParametersType;
typedef typename FixedImageType::PixelType FixedImagePixelType;
typedef typename MovingImageType::PixelType MovingImagePixelType;
// ImageSource
typedef itk::testhelper::ImageRegistrationMethodImageSource<
FixedImagePixelType,
MovingImagePixelType,
dimension > ImageSourceType;
// Transform Type
typedef itk::AffineTransform< double, dimension > TransformType;
typedef typename TransformType::ParametersType ParametersType;
// Optimizer Type
typedef itk::GradientDescentOptimizer OptimizerType;
// Metric Type
typedef itk::MeanSquaresImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;
// Interpolation technique
typedef itk:: LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;
// Registration Method
typedef itk::ImageRegistrationMethod<
FixedImageType,
MovingImageType > RegistrationType;
typedef itk::CommandIterationUpdate<
OptimizerType > CommandIterationType;
typename MetricType::Pointer metric = MetricType::New();
typename TransformType::Pointer transform = TransformType::New();
typename OptimizerType::Pointer optimizer = OptimizerType::New();
typename TransformType::Pointer trasform = TransformType::New();
typename InterpolatorType::Pointer interpolator = InterpolatorType::New();
typename RegistrationType::Pointer registration = RegistrationType::New();
typename ImageSourceType::Pointer imageSource = ImageSourceType::New();
SizeType size;
size[0] = 100;
size[1] = 100;
imageSource->GenerateImages( size );
typename FixedImageType::ConstPointer fixedImage = imageSource->GetFixedImage();
typename MovingImageType::ConstPointer movingImage = imageSource->GetMovingImage();
//
// Connect all the components required for Registratio
//
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetFixedImage( fixedImage );
registration->SetMovingImage( movingImage );
registration->SetInterpolator( interpolator );
// Select the Region of Interest over which the Metric will be computed
// Registration time will be proportional to the number of pixels in this region.
metric->SetFixedImageRegion( fixedImage->GetBufferedRegion() );
// Instantiate an Observer to report the progress of the Optimization
CommandIterationType::Pointer iterationCommand = CommandIterationType::New();
iterationCommand->SetOptimizer( optimizer.GetPointer() );
// Scale the translation components of the Transform in the Optimizer
OptimizerType::ScalesType scales( transform->GetNumberOfParameters() );
scales.Fill( 1.0 );
unsigned long numberOfIterations = 100;
double translationScale = 1e-6;
double learningRate = 1e-8;
for( unsigned int i=0; i<dimension; i++)
{
scales[ i + dimension * dimension ] = translationScale;
}
optimizer->SetScales( scales );
optimizer->SetLearningRate( learningRate );
optimizer->SetNumberOfIterations( numberOfIterations );
optimizer->MinimizeOn();
// Start from an Identity transform (in a normal case, the user
// can probably provide a better guess than the identity...
transform->SetIdentity();
registration->SetInitialTransformParameters( transform->GetParameters() );
// Initialize the internal connections of the registration method.
// This can potentially throw an exception
try
{
registration->Update();
}
catch( itk::ExceptionObject & e )
{
std::cerr << e << std::endl;
pass = false;
}
ParametersType actualParameters = imageSource->GetActualParameters();
ParametersType finalParameters = registration->GetLastTransformParameters();
const unsigned int numbeOfParameters = actualParameters.Size();
// We know that for the Affine transform the Translation parameters are at
// the end of the list of parameters.
const unsigned int offsetOrder = finalParameters.Size()-actualParameters.Size();
const double tolerance = 1.0; // equivalent to 1 pixel.
for(unsigned int i=0; i<numbeOfParameters; i++)
{
// the parameters are negated in order to get the inverse transformation.
// this only works for comparing translation parameters....
std::cout << finalParameters[i+offsetOrder] << " == " << -actualParameters[i] << std::endl;
if( vnl_math_abs ( finalParameters[i+offsetOrder] - (-actualParameters[i]) ) > tolerance )
{
std::cout << "Tolerance exceeded at component " << i << std::endl;
pass = false;
}
}
return pass;
}
int itkImageRegistrationMethodTest_16(int itkNotUsed(argc), char*[] itkNotUsed(argv) )
{
bool result_uc, result_c, result_us, result_s,
result_ui, result_i, result_ul, result_l,
result_f, result_d;
result_uc = DoRegistration<unsigned char>();
result_c = DoRegistration<char>();
result_us = DoRegistration<unsigned short>();
result_s = DoRegistration<short>();
result_ui = DoRegistration<unsigned int>();
result_i = DoRegistration<int>();
result_ul = DoRegistration<unsigned long>();
result_l = DoRegistration<long>();
result_f = DoRegistration<float>();
#ifndef __BORLANDC__
result_d = DoRegistration<double>();
#else
result_d = true;
#endif
std::cout << "<unsigned char>: " << result_uc << std::endl;
std::cout << "<char>: " << result_c << std::endl;
std::cout << "<unsigned short>: " << result_us << std::endl;
std::cout << "<short>: " << result_s << std::endl;
std::cout << "<unsigned int>: " << result_ui << std::endl;
std::cout << "<int>: " << result_i << std::endl;
std::cout << "<unsigned long>: " << result_ul << std::endl;
std::cout << "<long>: " << result_l << std::endl;
std::cout << "<float>: " << result_f << std::endl;
std::cout << "<double>: " << result_d << std::endl;
return EXIT_SUCCESS;
}
|