1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkKalmanLinearEstimatorTest.cxx,v $
Language: C++
Date: $Date: 2003-09-10 14:30:03 $
Version: $Revision: 1.8 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkKalmanLinearEstimator.h"
#include <iostream>
/**
* This program test one instantiation of the itk::KalmanLinearEstimator class
*
* The test is done by providing a Linear Equation in 6D for which the
* coefficients are known. A population of samples is generated and
* passed to the KalmanLinearEstimator.
*
*/
int itkKalmanLinearEstimatorTest(int, char* [] )
{
typedef itk::KalmanLinearEstimator<double,6> KalmanFilterType;
typedef KalmanFilterType::VectorType VectorType;
typedef KalmanFilterType::MatrixType MatrixType;
typedef KalmanFilterType::ValueType ValueType;
KalmanFilterType filter;
filter.ClearEstimation();
filter.SetVariance(1.0);
ValueType measure;
VectorType predictor;
VectorType planeEquation;
planeEquation(0) = 9.0;
planeEquation(1) = 6.0;
planeEquation(2) = 7.0;
planeEquation(3) = 9.0;
planeEquation(4) = 4.0;
planeEquation(5) = 6.0;
const unsigned int N = 10;
predictor(5) = 1.0;
for(unsigned int ax=0; ax < N; ax++)
{
predictor(0) = ax;
for(unsigned int bx=0; bx < N; bx++)
{
predictor(1) = bx;
for(unsigned int cx=0; cx < N; cx++)
{
predictor(2) = cx;
for(unsigned int dx=0; dx < N; dx++)
{
predictor(3) = dx;
for(unsigned int ex=0; ex < N; ex++)
{
predictor(4) = ex;
measure = dot_product( predictor, planeEquation );
filter.UpdateWithNewMeasure(measure,predictor);
}
}
}
}
}
VectorType estimation = filter.GetEstimator();
std::cout << std::endl << "The Right answer should be : " << std::endl;
std::cout << planeEquation;
std::cout << std::endl << "The Estimation is : " << std::endl;
std::cout << estimation;
VectorType error = estimation - planeEquation;
ValueType errorMagnitude = dot_product( error, error );
std::cout << std::endl << "Errors : " << std::endl;
std::cout << error;
std::cout << std::endl << "Error Magnitude : " << std::endl;
std::cout << errorMagnitude;
std::cout << std::endl << "Variance : " << std::endl;
std::cout << filter.GetVariance();
std::cout << std::endl << std::endl;
bool pass = true;
const float tolerance = 1e-4;
if( errorMagnitude > tolerance )
{
pass = false;
}
if( !pass )
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|