1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkKappaStatisticImageToImageMetricTest.cxx,v $
Language: C++
Date: $Date: 2006-06-28 20:47:56 $
Version: $Revision: 1.6 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkKappaStatisticImageToImageMetric.h"
#include "itkImage.h"
#include "itkImageRegionIterator.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkTranslationTransform.h"
/**
* This test exercised the various methods in the
* itkKappaStatisticImageToImageMetric class. Two binary images are
* created for testing purposes -- one of a square and another of the
* same square translated in both x and y.
*
*/
int itkKappaStatisticImageToImageMetricTest(int, char* [] )
{
typedef itk::Image< unsigned char, 2 > UCharImage2DType;
typedef itk::Image< double, 2 > DoubleImage2DType;
typedef itk::KappaStatisticImageToImageMetric< UCharImage2DType, UCharImage2DType > MetricType;
typedef itk::ImageRegionIteratorWithIndex< UCharImage2DType > UCharIteratorType;
typedef itk::ImageRegionIteratorWithIndex< DoubleImage2DType > DoubleIteratorType;
typedef itk::TranslationTransform< double, 2 > TransformType;
typedef itk::NearestNeighborInterpolateImageFunction< UCharImage2DType, double > InterpolatorType;
double epsilon = 0.000001;
TransformType::Pointer transform = TransformType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
UCharImage2DType::SizeType imageSize;
imageSize[0] = 128;
imageSize[1] = 128;
// Create fixed image
UCharImage2DType::Pointer fixedImage = UCharImage2DType::New();
fixedImage->SetRegions(imageSize);
fixedImage->Allocate();
fixedImage->FillBuffer(0);
fixedImage->Update();
UCharIteratorType fixedIt( fixedImage, fixedImage->GetBufferedRegion() );
for ( fixedIt.GoToBegin(); !fixedIt.IsAtEnd(); ++fixedIt )
{
UCharImage2DType::IndexType index = fixedIt.GetIndex();
if ((index[0]>=48)&&(index[0]<=80)&&(index[1]>=48)&&(index[1]<=80))
{
fixedIt.Set(255);
}
}
// Create moving image
UCharImage2DType::Pointer movingImage = UCharImage2DType::New();
movingImage->SetRegions(imageSize);
movingImage->Allocate();
movingImage->FillBuffer(0);
movingImage->Update();
UCharIteratorType movingIt( movingImage, movingImage->GetBufferedRegion() );
for ( movingIt.GoToBegin(); !movingIt.IsAtEnd(); ++movingIt )
{
UCharImage2DType::IndexType index = movingIt.GetIndex();
if ((index[0]>=55)&&(index[0]<=87)&&(index[1]>=55)&&(index[1]<=87))
{
movingIt.Set(255);
}
}
MetricType::Pointer metric = MetricType::New();
//------------------------------------------------------------------
// exercise [Set,Get]ForegroundValue method
//------------------------------------------------------------------
std::cout << "Test [Set,Get]ForegroundValue method..." << std::endl;
metric->SetForegroundValue(255);
if (metric->GetForegroundValue()!=255)
{
std::cerr << "Error!" << std::endl;
return EXIT_FAILURE;
}
std::cout << " [ PASSED ] " << std::endl;
//------------------------------------------------------------------
// exercise GetValue method
//------------------------------------------------------------------
std::cout << "Test GetValue method..." << std::endl;
transform->SetIdentity();
TransformType::ParametersType parameters = transform->GetParameters();
metric->SetFixedImage( fixedImage );
metric->SetMovingImage( movingImage );
metric->SetInterpolator( interpolator );
metric->SetTransform( transform );
metric->SetFixedImageRegion( fixedImage->GetBufferedRegion() );
try
{
metric->Initialize();
}
catch ( itk::ExceptionObject &excp )
{
std::cerr << "Exception caught while initializing metric." << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// The value 0.620753 was computed by hand for these two images
if (!((metric->GetValue( parameters ) >= 0.620753-epsilon)&&(metric->GetValue( parameters ) <= 0.620753+epsilon)))
{
std::cerr << "Error!" << std::endl;
return EXIT_FAILURE;
}
std::cout << " [ PASSED ] " << std::endl;
//------------------------------------------------------------------
// exercise ComputeGradient method
//------------------------------------------------------------------
std::cout << "Test ComputeGradient method..." << std::endl;
metric->ComputeGradient();
DoubleImage2DType::Pointer xGradImage = DoubleImage2DType::New();
xGradImage->SetRegions(imageSize);
xGradImage->Allocate();
xGradImage->FillBuffer(0);
xGradImage->Update();
DoubleImage2DType::Pointer yGradImage = DoubleImage2DType::New();
yGradImage->SetRegions(imageSize);
yGradImage->Allocate();
yGradImage->FillBuffer(0);
yGradImage->Update();
DoubleIteratorType xGradIt( xGradImage, xGradImage->GetBufferedRegion() );
DoubleIteratorType yGradIt( yGradImage, yGradImage->GetBufferedRegion() );
xGradIt.GoToBegin();
yGradIt.GoToBegin();
// Construct the gradient images explicitly based on what we know
// they should be and use them to validate metric's version
while ( !xGradIt.IsAtEnd() )
{
DoubleImage2DType::IndexType index = xGradIt.GetIndex();
if (((index[0]==54)||(index[0]==55))&&(index[1]>=55)&&(index[1]<=87))
{
xGradIt.Set(1);
}
if (((index[0]==87)||(index[0]==88))&&(index[1]>=55)&&(index[1]<=87))
{
xGradIt.Set(-1);
}
if (((index[1]==54)||(index[1]==55))&&(index[0]>=55)&&(index[0]<=87))
{
yGradIt.Set(1);
}
if (((index[1]==87)||(index[1]==88))&&(index[0]>=55)&&(index[0]<=87))
{
yGradIt.Set(-1);
}
++xGradIt;
++yGradIt;
}
typedef itk::ImageRegionIteratorWithIndex< const MetricType::GradientImageType > GradIteratorType;
GradIteratorType gradIt( metric->GetGradientImage(), metric->GetGradientImage()->GetBufferedRegion() );
gradIt.GoToBegin();
xGradIt.GoToBegin();
yGradIt.GoToBegin();
while ( !gradIt.IsAtEnd() )
{
if (((gradIt.Get())[0] != xGradIt.Get())||((gradIt.Get())[1] != yGradIt.Get()))
{
std::cerr << "Error!" << std::endl;
return EXIT_FAILURE;
}
++gradIt;
++xGradIt;
++yGradIt;
}
std::cout << " [ PASSED ] " << std::endl;
//------------------------------------------------------------------
// exercise GetDerivative method
//------------------------------------------------------------------
std::cout << "Test GetDerivative method..." << std::endl;
MetricType::DerivativeType derivative;
metric->GetDerivative( parameters, derivative );
// The value 0.0477502 was computed by hand
if (!((derivative[0]>=-0.0477502-epsilon)&&(derivative[0]<=-0.0477502+epsilon)))
{
std::cerr << "Error!" << std::endl;
return EXIT_FAILURE;
}
if (!((derivative[1]>=-0.0477502-epsilon)&&(derivative[1]<=-0.0477502+epsilon)))
{
std::cerr << "Error!" << std::endl;
return EXIT_FAILURE;
}
std::cout << " [ PASSED ] " << std::endl;
//------------------------------------------------------------------
// exercise Complement method
//------------------------------------------------------------------
std::cout << "Test Complement method..." << std::endl;
metric->ComplementOn();
// The value 0.379247 was computed by hand
if (!((metric->GetValue(parameters)>=0.379247-epsilon)&&(metric->GetValue(parameters)<=0.379247+epsilon)))
{
std::cerr << "Error!" << std::endl;
return EXIT_FAILURE;
}
std::cout << " [ PASSED ] " << std::endl;
return EXIT_SUCCESS;
}
|