1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkLabelVotingImageFilterTest.cxx,v $
Language: C++
Date: $Date: 2005-07-14 22:03:49 $
Version: $Revision: 1.2 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include <itkImage.h>
#include <itkLabelVotingImageFilter.h>
#include <itkImageRegionIterator.h>
int itkLabelVotingImageFilterTest(int, char* [] )
{
// Define the dimension of the images
const unsigned int myDimension = 3;
// Declare the types of the images
typedef itk::Image<unsigned int, myDimension> myImageType;
// Input data arrays for test images
const unsigned int dataImageA[8] =
{ 0, 1, 3, 3, 4, 6, 6, 0 };
const unsigned int dataImageB[8] =
{ 1, 1, 2, 4, 4, 5, 7, 1 };
const unsigned int dataImageC[8] =
{ 0, 2, 2, 3, 5, 5, 6, 8 };
// Correct combinations of input images
const unsigned int combinationABC[8] =
{ 0, 1, 2, 3, 4, 5, 6, 9 };
const unsigned int combinationAB[8] =
{ 8, 1, 8, 8, 4, 8, 8, 8 };
const unsigned int combinationABundecided255[8] =
{ 255, 1, 255, 255, 4, 255, 255, 255 };
// Declare the type of the index to access images
typedef itk::Index<myDimension> myIndexType;
// Declare the type of the size
typedef itk::Size<myDimension> mySizeType;
// Declare the type of the Region
typedef itk::ImageRegion<myDimension> myRegionType;
// Declare Iterator type apropriate for image
typedef itk::ImageRegionIterator<myImageType> myIteratorType;
// Declare the type for the ADD filter
typedef itk::LabelVotingImageFilter<myImageType> myFilterType;
typedef myFilterType::Pointer myFilterTypePointer;
// Declare the pointers to images
typedef myImageType::Pointer myImageTypePointer;
// Create two images
myImageTypePointer inputImageA = myImageType::New();
myImageTypePointer inputImageB = myImageType::New();
myImageTypePointer inputImageC = myImageType::New();
// Define their size, and start index
mySizeType size;
size[0] = 2;
size[1] = 2;
size[2] = 2;
myIndexType start;
start[0] = 0;
start[1] = 0;
start[2] = 0;
myRegionType region;
region.SetIndex( start );
region.SetSize( size );
// Initialize Image A
inputImageA->SetLargestPossibleRegion( region );
inputImageA->SetBufferedRegion( region );
inputImageA->SetRequestedRegion( region );
inputImageA->Allocate();
myIteratorType it =
myIteratorType( inputImageA, inputImageA->GetBufferedRegion() );
for( int i = 0; i < 8; ++i, ++it )
{
it.Set( dataImageA[i] );
}
// Initialize Image B
inputImageB->SetLargestPossibleRegion( region );
inputImageB->SetBufferedRegion( region );
inputImageB->SetRequestedRegion( region );
inputImageB->Allocate();
it = myIteratorType( inputImageB, inputImageB->GetBufferedRegion() );
for( int i = 0; i < 8; ++i, ++it )
{
it.Set( dataImageB[i] );
}
// Initialize Image C
inputImageC->SetLargestPossibleRegion( region );
inputImageC->SetBufferedRegion( region );
inputImageC->SetRequestedRegion( region );
inputImageC->Allocate();
it = myIteratorType( inputImageC, inputImageC->GetBufferedRegion() );
for( int i = 0; i < 8; ++i, ++it )
{
it.Set( dataImageC[i] );
}
// Create an LabelVoting Filter
myFilterTypePointer filter = myFilterType::New();
// Get the Smart Pointer to the Filter Output
myImageTypePointer outputImage = filter->GetOutput();
// = test first two input images with undecided label set to 255 = //
// Connect the first two input images
filter->SetInput( 0, inputImageA );
filter->SetInput( 1, inputImageB );
// Set label for undecided pixels
filter->SetLabelForUndecidedPixels( 255 );
// Execute the filter
filter->Update();
// compare to correct results
it = myIteratorType( outputImage, outputImage->GetBufferedRegion() );
for( unsigned int i = 0; i < 8; ++i, ++it )
{
if( combinationABundecided255[i] != it.Get() )
{
std::cout << "Incorrect result using images A,B and undecided=255: "
<< "i = " << i
<< ", correct = " << combinationABundecided255[i]
<< ", got = " << it.Get() << "\n";
return EXIT_FAILURE;
}
}
// =========== test first two input images ============ //
// unset undecided pixel label; reinstate automatic selection
filter->UnsetLabelForUndecidedPixels();
// Execute the filter
filter->Update();
// compare to correct results
it = myIteratorType( outputImage, outputImage->GetBufferedRegion() );
for(unsigned int i = 0; i < 8; ++i, ++it )
{
if( combinationAB[i] != it.Get() )
{
std::cout << "Incorrect result using images A,B: i = " << i
<< ", correct = " << combinationAB[i]
<< ", got = " << it.Get() << "\n";
return EXIT_FAILURE;
}
}
// =========== test all three input images ============ //
// connect third input image
filter->SetInput( 2, inputImageC );
// Execute the filter
filter->Update();
// compare to correct results
it = myIteratorType( outputImage, outputImage->GetBufferedRegion() );
for( unsigned int i = 0; i < 8; ++i, ++it )
{
if( combinationABC[i] != it.Get() )
{
std::cout << "Incorrect result using images A,B,C: i = " << i
<< ", correct = " << combinationABC[i]
<< ", got = " << it.Get() << "\n";
return EXIT_FAILURE;
}
}
std::cout << "Success!\n";
// All objects should be automatically destroyed at this point
return EXIT_SUCCESS;
}
|