1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkPointSetToImageRegistrationTest_1.cxx,v $
Language: C++
Date: $Date: 2005-08-12 06:36:38 $
Version: $Revision: 1.9 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifdef _WIN32
#pragma warning ( disable : 4786 )
#endif
#include "itkImageRegionIterator.h"
#include "itkTranslationTransform.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkNormalizedCorrelationPointSetToImageMetric.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkGaussianImageSource.h"
#include "itkImage.h"
#include "itkPointSet.h"
#include "itkPointSetToImageRegistrationMethod.h"
#include "itkCommandIterationUpdate.h"
#include "itkImageRegistrationMethodImageSource.h"
#include <iostream>
/**
*
* This program tests the registration of a PointSet against an image.
*
* This test uses two 2D-Gaussians (standard deviation RegionSize/2)
* One is shifted by 5 pixels from the other.
*
*/
int itkPointSetToImageRegistrationTest_1(int, char* [] )
{
//------------------------------------------------------------
// Create two simple images
//------------------------------------------------------------
const unsigned int ImageDimension = 2;
typedef double PixelType;
typedef double CoordinateRepresentationType;
//Allocate Images
typedef itk::Image<PixelType,ImageDimension> MovingImageType;
typedef itk::Image<PixelType,ImageDimension> FixedImageType;
// ImageSource
typedef itk::testhelper::ImageRegistrationMethodImageSource<
PixelType,
PixelType,
ImageDimension > ImageSourceType;
ImageSourceType::Pointer imageSource = ImageSourceType::New();
itk::Size<ImageDimension> size;
size[0] = 100;
size[1] = 100;
imageSource->GenerateImages( size );
MovingImageType::ConstPointer movingImage = imageSource->GetMovingImage();
FixedImageType::ConstPointer fixedImage = imageSource->GetFixedImage();
//-----------------------------------------------------------
// Create the point set and load it with data by sampling
// the fixed image
//-----------------------------------------------------------
typedef itk::PointSet< float, 2 > FixedPointSetType;
FixedPointSetType::Pointer fixedPointSet = FixedPointSetType::New();
const unsigned int numberOfPoints = 10000;
fixedPointSet->SetPointData( FixedPointSetType::PointDataContainer::New() );
fixedPointSet->GetPoints()->Reserve( numberOfPoints );
fixedPointSet->GetPointData()->Reserve( numberOfPoints );
typedef itk::ImageRegionConstIterator< FixedImageType > ImageIteratorType;
ImageIteratorType it( fixedImage, fixedImage->GetBufferedRegion() );
const unsigned int skip =
fixedImage->GetBufferedRegion().GetNumberOfPixels() / numberOfPoints;
unsigned int counter = 0;
FixedPointSetType::PointIdentifier pointId = 0;
FixedPointSetType::PointType point;
it.GoToBegin();
while( !it.IsAtEnd() )
{
if( counter==0 )
{
fixedImage->TransformIndexToPhysicalPoint( it.GetIndex(), point );
fixedPointSet->SetPoint( pointId, point );
fixedPointSet->SetPointData( pointId, it.Get() );
++pointId;
if( pointId == numberOfPoints )
{
break;
}
counter = skip;
}
--counter;
++it;
}
//-----------------------------------------------------------
// Set up the Metric
//-----------------------------------------------------------
typedef itk::NormalizedCorrelationPointSetToImageMetric<
FixedPointSetType,
MovingImageType >
MetricType;
typedef MetricType::TransformType TransformBaseType;
typedef TransformBaseType::ParametersType ParametersType;
typedef TransformBaseType::JacobianType JacobianType;
MetricType::Pointer metric = MetricType::New();
//-----------------------------------------------------------
// Set up a Transform
//-----------------------------------------------------------
typedef itk::TranslationTransform<
CoordinateRepresentationType,
ImageDimension > TransformType;
TransformType::Pointer transform = TransformType::New();
//------------------------------------------------------------
// Set up an Interpolator
//------------------------------------------------------------
typedef itk::LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;
InterpolatorType::Pointer interpolator = InterpolatorType::New();
// Optimizer Type
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
OptimizerType::Pointer optimizer = OptimizerType::New();
// Registration Method
typedef itk::PointSetToImageRegistrationMethod<
FixedPointSetType,
MovingImageType > RegistrationType;
RegistrationType::Pointer registration = RegistrationType::New();
typedef itk::CommandIterationUpdate<
OptimizerType > CommandIterationType;
// Instantiate an Observer to report the progress of the Optimization
CommandIterationType::Pointer iterationCommand = CommandIterationType::New();
iterationCommand->SetOptimizer( optimizer.GetPointer() );
// Scale the translation components of the Transform in the Optimizer
OptimizerType::ScalesType scales( transform->GetNumberOfParameters() );
scales.Fill( 1.0 );
unsigned long numberOfIterations = 50;
//double translationScale = 1.0; // not used
double maximumStepLenght = 1.0; // no step will be larger than this
double minimumStepLenght = 0.01; // convergence criterion
double gradientTolerance = 1e-6; // convergence criterion
optimizer->SetScales( scales );
optimizer->SetNumberOfIterations( numberOfIterations );
optimizer->SetMinimumStepLength( minimumStepLenght );
optimizer->SetMaximumStepLength( maximumStepLenght );
optimizer->SetGradientMagnitudeTolerance( gradientTolerance );
optimizer->MinimizeOn();
// Start from an Identity transform (in a normal case, the user
// can probably provide a better guess than the identity...
transform->SetIdentity();
registration->SetInitialTransformParameters( transform->GetParameters() );
//------------------------------------------------------
// Connect all the components required for Registration
//------------------------------------------------------
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetFixedPointSet( fixedPointSet );
registration->SetMovingImage( movingImage );
registration->SetInterpolator( interpolator );
//------------------------------------------------------------
// Set up transform parameters
//------------------------------------------------------------
ParametersType parameters( transform->GetNumberOfParameters() );
// initialize the offset/vector part
for( unsigned int k = 0; k < ImageDimension; k++ )
{
parameters[k]= 0.0f;
}
try
{
registration->StartRegistration();
}
catch( itk::ExceptionObject & e )
{
std::cout << e << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|