File: itkPointSetToPointSetRegistrationTest.cxx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (261 lines) | stat: -rw-r--r-- 8,029 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkPointSetToPointSetRegistrationTest.cxx,v $
  Language:  C++
  Date:      $Date: 2006-06-07 02:58:00 $
  Version:   $Revision: 1.7 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifdef _WIN32
#pragma warning ( disable : 4786 )
#endif

#include "itkTranslationTransform.h"
#include "itkEuclideanDistancePointMetric.h"
#include "itkLevenbergMarquardtOptimizer.h"
#include "itkPointSet.h"
#include "itkPointSetToPointSetRegistrationMethod.h"
#include "itkDanielssonDistanceMapImageFilter.h"
#include "itkPointSetToImageFilter.h"
#include <iostream>

/**
 *
 *  This program tests the registration of a PointSet against an other PointSet. 
 *
 */

int itkPointSetToPointSetRegistrationTest(int, char* [] )
{

//------------------------------------------------------------
// Create two simple point sets
//------------------------------------------------------------
  typedef itk::PointSet< float, 2 >   FixedPointSetType;
  FixedPointSetType::Pointer fixedPointSet = FixedPointSetType::New();

  const unsigned int numberOfPoints = 500;

  fixedPointSet->SetPointData( FixedPointSetType::PointDataContainer::New() );

  fixedPointSet->GetPoints()->Reserve( numberOfPoints );
  fixedPointSet->GetPointData()->Reserve( numberOfPoints );

  FixedPointSetType::PointType  point;

  unsigned int id = 0;
  for(unsigned int i=0;i<numberOfPoints/2;i++)
    {
    point[0]=0;
    point[1]=i;
    fixedPointSet->SetPoint( id++, point );
    }
  for(unsigned int i=0;i<numberOfPoints/2;i++)
    {
    point[0]=i;
    point[1]=0;
    fixedPointSet->SetPoint( id++, point );
    }

 // Moving Point Set
  typedef itk::PointSet< float, 2 >  MovingPointSetType;
  MovingPointSetType::Pointer movingPointSet = MovingPointSetType::New();


  movingPointSet->SetPointData( MovingPointSetType::PointDataContainer::New() );

  movingPointSet->GetPoints()->Reserve( numberOfPoints );
  movingPointSet->GetPointData()->Reserve( numberOfPoints );

  id = 0;
  for(unsigned int i=0;i<numberOfPoints/2;i++)
    {
    point[0]=0;
    point[1]=i;
    movingPointSet->SetPoint( id++, point );
    }
  for(unsigned int i=0;i<numberOfPoints/2;i++)
    {
    point[0]=i;
    point[1]=0;
    movingPointSet->SetPoint( id++, point );
    }

//-----------------------------------------------------------
// Set up  the Metric
//-----------------------------------------------------------
  typedef itk::EuclideanDistancePointMetric<  
    FixedPointSetType, 
    MovingPointSetType>   
    MetricType;

  typedef MetricType::TransformType                 TransformBaseType;
  typedef TransformBaseType::ParametersType         ParametersType;
  typedef TransformBaseType::JacobianType           JacobianType;

  MetricType::Pointer  metric = MetricType::New();


//-----------------------------------------------------------
// Set up a Transform
//-----------------------------------------------------------

  typedef itk::TranslationTransform< 
    double, 
    2 >         TransformType;

  TransformType::Pointer transform = TransformType::New();


  // Optimizer Type
  typedef itk::LevenbergMarquardtOptimizer OptimizerType;

  OptimizerType::Pointer      optimizer     = OptimizerType::New();
  optimizer->SetUseCostFunctionGradient(false);

  // Registration Method
  typedef itk::PointSetToPointSetRegistrationMethod< 
    FixedPointSetType, 
    MovingPointSetType >    RegistrationType;


  RegistrationType::Pointer   registration  = RegistrationType::New();

  // Scale the translation components of the Transform in the Optimizer
  OptimizerType::ScalesType scales( transform->GetNumberOfParameters() );
  scales.Fill( 1.0 );

  
  unsigned long   numberOfIterations =   100;
  double          gradientTolerance  =  1e-1; // convergence criterion
  double          valueTolerance =  1e-1; // convergence criterion
  double          epsilonFunction =  1e-9; // convergence criterion


  optimizer->SetScales( scales );
  optimizer->SetNumberOfIterations( numberOfIterations );
  optimizer->SetValueTolerance(valueTolerance);
  optimizer->SetGradientTolerance(gradientTolerance);
  optimizer->SetEpsilonFunction(epsilonFunction);

  // Start from an Identity transform (in a normal case, the user 
  // can probably provide a better guess than the identity...
  transform->SetIdentity();

  registration->SetInitialTransformParameters( transform->GetParameters() );

  //------------------------------------------------------
  // Connect all the components required for Registration
  //------------------------------------------------------
  registration->SetMetric(        metric        );
  registration->SetOptimizer(     optimizer     );
  registration->SetTransform(     transform     );
  registration->SetFixedPointSet( fixedPointSet );
  registration->SetMovingPointSet(   movingPointSet   );


//------------------------------------------------------------
// Set up transform parameters
//------------------------------------------------------------
  ParametersType parameters( transform->GetNumberOfParameters() );

  // initialize the offset/vector part
  for( unsigned int k = 0; k < 2; k++ )
    {
    parameters[k]= 10.0;
    }

  transform->SetParameters(parameters);
  registration->SetInitialTransformParameters( transform->GetParameters() );

  try 
    {
    registration->StartRegistration();
    }
  catch( itk::ExceptionObject & e )
    {
    std::cout << e << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "Solution = " << transform->GetParameters() << std::endl;

  if((vnl_math_abs(transform->GetParameters()[0])>1.0)
    ||
    (vnl_math_abs(transform->GetParameters()[1])>1.0)
    )
    {
    return EXIT_FAILURE;
    }

  /** Test with the danielsson distance map */
  typedef itk::Image<unsigned char,2>  BinaryImageType;
  typedef itk::Image<unsigned short,2> ImageType;
 
  typedef itk::PointSetToImageFilter<FixedPointSetType,BinaryImageType> PSToImageFilterType;
  PSToImageFilterType::Pointer psToImageFilter = PSToImageFilterType::New();
  
  psToImageFilter->SetInput(fixedPointSet);
  double origin[2] = {0.0, 0.0}, spacing[2] = {1.0, 1.0};
  psToImageFilter->SetSpacing(spacing);
  psToImageFilter->SetOrigin(origin);
  std::cout << "Spacing and origin set: ["
            << psToImageFilter->GetSpacing() << "], ,["
            << psToImageFilter->GetOrigin() << "]" << std::endl;
  psToImageFilter->Update();
  std::cout << "psToImageFilter: " << psToImageFilter << std::endl;

  BinaryImageType::Pointer binaryImage = psToImageFilter->GetOutput();

  typedef itk::DanielssonDistanceMapImageFilter<BinaryImageType,ImageType> DDFilterType;
  DDFilterType::Pointer ddFilter = DDFilterType::New();
  ddFilter->SetInput(binaryImage);
  ddFilter->Update();

  metric->SetDistanceMap(ddFilter->GetOutput());
  metric->ComputeSquaredDistanceOn();

   // initialize the offset/vector part
  for( unsigned int k = 0; k < 2; k++ )
    {
    parameters[k]= 10.0;
    }

  transform->SetParameters(parameters);
  registration->SetInitialTransformParameters( transform->GetParameters() );

  try 
    {
    registration->StartRegistration();
    }
  catch( itk::ExceptionObject & e )
    {
    std::cout << e << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "Solution = " << transform->GetParameters() << std::endl;

  if((vnl_math_abs(transform->GetParameters()[0])>1.0)
    ||
    (vnl_math_abs(transform->GetParameters()[1])>1.0)
    )
    {
    return EXIT_FAILURE;
    }


  std::cout << "TEST DONE" << std::endl;

  return EXIT_SUCCESS;

}