File: itkSimpleMultiResolutionImageRegistrationUI.h

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (134 lines) | stat: -rw-r--r-- 4,015 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkSimpleMultiResolutionImageRegistrationUI.h,v $
  Language:  C++
  Date:      $Date: 2004-12-21 22:47:32 $
  Version:   $Revision: 1.5 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef _itkSimpleMultiResolutionImageRegistrationUI_h
#define _itkSimpleMultiResolutionImageRegistrationUI_h

#include "itkMultiResolutionImageRegistrationMethod.h"
#include "itkCommand.h"
#include "itkArray.h"
#include "itkGradientDescentOptimizer.h"

// The following classes are examples of simple user interface
// that controls a MultiResolutionImageRegistrationMethod process

template <typename TRegistrator>
class SimpleMultiResolutionImageRegistrationUI
{
public:
  SimpleMultiResolutionImageRegistrationUI( TRegistrator * ptr )
    {

    if ( !ptr ) return;
    m_Registrator = ptr;
    typename itk::SimpleMemberCommand<SimpleMultiResolutionImageRegistrationUI>::Pointer
      iterationCommand =
    itk::SimpleMemberCommand<SimpleMultiResolutionImageRegistrationUI>::New();

    iterationCommand->SetCallbackFunction( this,
      &SimpleMultiResolutionImageRegistrationUI::StartNewLevel );

    m_Tag = m_Registrator->AddObserver( itk::IterationEvent(), iterationCommand );

    }

  virtual ~SimpleMultiResolutionImageRegistrationUI()
    {
    if( m_Registrator ) { m_Registrator->RemoveObserver( m_Tag ); }
    }

   virtual void StartNewLevel()
    {
    std::cout << "--- Starting level " << m_Registrator->GetCurrentLevel()
              << std::endl;
    }

protected:
  typename TRegistrator::Pointer  m_Registrator;
  unsigned long                   m_Tag;

};


// This UI supports registration methods with gradient descent
// type optimizers.
// This UI allows the number of iterations and learning rate
// to be changes at each resolution level.
template <typename TRegistration>
class SimpleMultiResolutionImageRegistrationUI2 :
  public SimpleMultiResolutionImageRegistrationUI<TRegistration>
{
public:

  typedef SimpleMultiResolutionImageRegistrationUI<TRegistration>
    Superclass;

  SimpleMultiResolutionImageRegistrationUI2( TRegistration * ptr ) :
    Superclass(ptr) {};
  virtual ~SimpleMultiResolutionImageRegistrationUI2(){}

  void SetNumberOfIterations( itk::Array<unsigned int> & iter )
    {
    m_NumberOfIterations = iter;
    }

  void SetLearningRates( itk::Array<double> & rates )
    {
    m_LearningRates = rates;
    }

  virtual void StartNewLevel()
    {

    // call the superclass's implementation
    this->Superclass::StartNewLevel();

    if ( !this->m_Registrator ) return;

    // Try to cast the optimizer to a gradient descent type,
    // return if casting didn't work.
    itk::GradientDescentOptimizer::Pointer optimizer;
    optimizer = dynamic_cast< itk::GradientDescentOptimizer * >(
      this->m_Registrator->GetOptimizer() );
    if ( !optimizer ) return;

    unsigned int level = this->m_Registrator->GetCurrentLevel();
    if ( m_NumberOfIterations.Size() >= level + 1 )
      {
      optimizer->SetNumberOfIterations( m_NumberOfIterations[level] );
      }

    if ( m_LearningRates.Size() >= level + 1 )
      {
      optimizer->SetLearningRate( m_LearningRates[level] );
      }

    std::cout << " No. Iterations: " 
              << optimizer->GetNumberOfIterations()
              << " Learning rate: "
              << optimizer->GetLearningRate()
              << std::endl;
    }

private:
   itk::Array<unsigned int> m_NumberOfIterations;
   itk::Array<double>       m_LearningRates;

};


#endif