File: itkSparseFieldFourthOrderLevelSetImageFilterTest.cxx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (169 lines) | stat: -rw-r--r-- 5,538 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkSparseFieldFourthOrderLevelSetImageFilterTest.cxx,v $
  Language:  C++
  Date:      $Date: 2007-08-10 14:34:02 $
  Version:   $Revision: 1.12 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

#include "itkImageRegionIterator.h"
#include "itkSparseFieldFourthOrderLevelSetImageFilter.h"
#include "itkLevelSetFunctionWithRefitTerm.h"
#include <iostream>

/*
 * This test exercises the SparseFieldFourthOrderLevelSetImageFilter
 * framework. A 2D image of a square is created and passed as input to the
 * filter which performs 500 iterations. This application will perform
 * isotropic fourth order diffusion on the input; therefore, the square will
 * morph towards a circle. The classes tested are the following:
 *
 * SparseImage
 * FiniteDifferenceSparseImageFilter
 * FiniteDifferenceSparseImageFunction
 * ImplicitManifoldNormalDiffusionFilter
 * NormalVectorFunctionBase
 * NormalVectorDiffusionFunction
 * LevelSetFunctionWithRefitTerm
 * SparseFieldFourthOrderLevelSetImageFilter
 * 
 */

const unsigned int HEIGHT = (128);
const unsigned int WIDTH  = (128);

#define RADIUS (vnl_math_min(HEIGHT, WIDTH)/4)

// Distance transform function for square
float square(unsigned x, unsigned y)
{
    float X, Y;
    X = ::fabs(x - (float)WIDTH/2.0);
    Y = ::fabs(y - (float)HEIGHT/2.0);
    float dis;
    if (!((X > RADIUS)&&(Y > RADIUS)))
      dis = RADIUS - vnl_math_max(X, Y);
    else
      dis = -sqrt((X - RADIUS)*(X - RADIUS) +  (Y - RADIUS)*(Y - RADIUS));
    return(dis);
}

// Evaluates a function at each pixel in the itk image
void evaluate_function(itk::Image<float, 2> *im,
                       float (*f)(unsigned int, unsigned int) )
  
{
  itk::Image<float, 2>::IndexType idx;
  for (unsigned int x = 0; x < WIDTH; ++x)
    {
      idx[0] = x;
      for (unsigned int y = 0; y < HEIGHT; ++y)
        {
          idx[1] = y;
          im->SetPixel(idx, f(x, y) );
        }
    }
}

namespace itk {
template <class TInputImage, class TOutputImage>
class ITK_EXPORT IsotropicDiffusionLevelSetFilter
  : public SparseFieldFourthOrderLevelSetImageFilter <TInputImage, TOutputImage>
{
public:
  typedef IsotropicDiffusionLevelSetFilter Self;
  typedef SparseFieldFourthOrderLevelSetImageFilter <TInputImage,
                                                     TOutputImage> Superclass;
  typedef SmartPointer<Self> Pointer;
  typedef SmartPointer<const Self> ConstPointer;

  itkTypeMacro(IsotropicDiffusionLevelSetFilter,SparseFieldFourthOrderLevelSetImageFilter);
  itkNewMacro (Self);

  typedef typename Superclass::SparseImageType SparseImageType;
  typedef LevelSetFunctionWithRefitTerm <TOutputImage,SparseImageType> FunctionType;
  typedef typename FunctionType::RadiusType RadiusType;
  
protected:
  typename FunctionType::Pointer m_Function;        
  IsotropicDiffusionLevelSetFilter()
  {
    RadiusType radius;
    for (unsigned int j=0; j<TInputImage::ImageDimension;j++)
      {
      radius[j] = 1;
      }

    m_Function=FunctionType::New();
    this->SetLevelSetFunction(m_Function);
    this->SetNumberOfLayers(this->GetMinimumNumberOfLayers());
    
    this->SetMaxNormalIteration(10);
    this->SetMaxRefitIteration(40);
    m_Function->Initialize(radius);    
    this->SetNormalProcessType (0);

    m_Function->Print(std::cout);
  }
  
  virtual bool Halt ()
  {
    if (this->GetElapsedIterations()==50) return true;
    else return false;
  }
};

} // end namespace itk

int itkSparseFieldFourthOrderLevelSetImageFilterTest(int, char* [] )
{
  typedef itk::Image<float, 2> ImageType;
  
  ImageType::Pointer im_init = ImageType::New();
  
  ImageType::RegionType r;
  ImageType::SizeType   sz = {{HEIGHT, WIDTH}};
  ImageType::IndexType  idx = {{0,0}};
  r.SetSize(sz);
  r.SetIndex(idx);

  im_init->SetLargestPossibleRegion(r);
  im_init->SetBufferedRegion(r);
  im_init->SetRequestedRegion(r);
  im_init->Allocate();

  evaluate_function(im_init, square);
  typedef itk::IsotropicDiffusionLevelSetFilter<ImageType, ImageType> FilterType;
  FilterType::Pointer filter = FilterType::New();

  filter->SetInput(im_init);
  std::cout<<"MaxRefitIteration = "<<(filter->GetMaxRefitIteration())<<"\n";
  std::cout<<"MaxNormalIteration = "<<(filter->GetMaxNormalIteration())<<"\n";
  filter->SetCurvatureBandWidth (4);
  std::cout<<"CurvatureBandWidth= "<<(filter->GetCurvatureBandWidth())<<"\n";
  filter->SetRMSChangeNormalProcessTrigger(0.001);
  std::cout<<"RMS change trigger = "
           <<(filter->GetRMSChangeNormalProcessTrigger())<<"\n";
  std::cout<<"Normal process type = "<<(filter->GetNormalProcessType())<<"\n";
  std::cout<<"Conductance = "<<(filter->GetNormalProcessConductance())<<"\n";
  std::cout<<"Unsharp flag = "<<(filter->GetNormalProcessUnsharpFlag())<<"\n";
  std::cout<<"Unsharp weight = "
           <<(filter->GetNormalProcessUnsharpWeight())<<"\n";
  
  filter->Update();
  filter->Print(std::cout);
  std::cout<<"Passed.\n";
  return EXIT_SUCCESS;
}