File: itkAffineTransformTest.cxx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (384 lines) | stat: -rw-r--r-- 11,440 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkAffineTransformTest.cxx,v $
  Language:  C++
  Date:      $Date: 2008-02-14 04:56:55 $
  Version:   $Revision: 1.42 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

#include <iostream>

#include "itkAffineTransform.h"
#include "itkImage.h"
#include "vnl/vnl_vector_fixed.h"

typedef  itk::Matrix<double,2,2>   MatrixType;
typedef  itk::Vector<double,2>     VectorType;

namespace
{
  
void PrintVector( const VectorType & v )
  {
  for( unsigned int i=0; i<VectorType::Dimension; i++)
    {
    std::cout << v[i] << ", ";
    }
  std::cout << std::endl;
  }
}


int itkAffineTransformTest(int, char *[])
{


    int any = 0;       // Any errors detected in testing?

    MatrixType                   matrix2;
    MatrixType                   inverse2;
    VectorType                   vector2;

    unsigned int i, j;

    /* FIXME: This code exercises most of the methods but doesn't
       actually check that the results are correct. */

    /* Create a 2D identity transformation and show its parameters */
    typedef itk::Point<double,12> ParametersType;
    typedef itk::Matrix<double,2,12> JacobianType;
    
    typedef itk::AffineTransform<double,2> Affine2DType;
    Affine2DType::Pointer id2 = Affine2DType::New();
    matrix2 = id2->GetMatrix();
    vector2 = id2->GetOffset();
    std::cout << "Matrix from instantiating an identity transform:"
              << std::endl << matrix2;
    std::cout << "Vector from instantiating an identity transform:"
              << std::endl;
    PrintVector( vector2 );
    
    /* Create and show a simple 2D transform from given parameters */
    matrix2[0][0] = 1;
    matrix2[0][1] = 2;
    matrix2[1][0] = 3;
    matrix2[1][1] = 4;
    vector2[0] = 5;
    vector2[1] = 6;

    Affine2DType::Pointer aff2 = Affine2DType::New();
    aff2->SetMatrix( matrix2 );
    aff2->SetOffset( vector2 );
    for (i = 0; i < 2; i++)
      {
      for (j = 0; j < 2; j++)
        {
        matrix2[i][j] = 0.0;
        }
      vector2[i]    = 0.0;
      }
    std::cout << "Instantiation of a given 2D transform:" << std::endl;
    aff2->Print( std::cout );

    inverse2 = aff2->GetInverseMatrix();
    std::cout << "Inverse matrix for the given transform:"
              << std::endl << inverse2;

    /* Set parameters of a 2D transform */
    matrix2[0][0] = 6;
    matrix2[0][1] = 5;
    matrix2[1][0] = 4;
    matrix2[1][1] = 3;
    vector2[0] = 2;
    vector2[1] = 1;
    aff2->SetMatrix(matrix2);
    aff2->SetOffset(vector2);
    for (i = 0; i < 2; i++)
      {
      for (j = 0; j < 2; j++)
        {
        matrix2[i][j] = 0.0;
        }
      vector2[i]    = 0.0;
      }
    matrix2 = aff2->GetMatrix();
    vector2 = aff2->GetOffset();
    std::cout << "Setting the matrix in an existing transform:"
              << std::endl << matrix2;
    std::cout << "Setting the offset in an existing  transform:"
              << std::endl;
    PrintVector( vector2 );


    /* Try composition of two transformations */
    aff2->Compose( aff2 );
    std::cout << "Result of a composition:" << std::endl;
    aff2->Print( std::cout );

    /* Compose with a translation */
    VectorType trans;
    trans[0] = 1;
    trans[1] = 2;
    aff2->Translate(trans);
    std::cout << "Result of a translation:" << std::endl;
    aff2->Print( std::cout );

    /* Compose with an isotropic scaling */
    aff2->Scale(.3, 1);
    std::cout << "Result of isotropic scaling:" << std::endl;
    aff2->Print( std::cout );

    /* Compose with an anisotropic scaling */
    VectorType scale;
    scale[0] = .3;
    scale[1] = .2;
    aff2->Scale(scale);
    std::cout << "Result of anisotropic scaling:" << std::endl;
    aff2->Print( std::cout );

    /* Compose with a general N-D rotation */
    aff2->Rotate(0, 1, 0.57, 1);
    std::cout << "Result of general rotation:" << std::endl;
    aff2->Print( std::cout );

    /* Compose with a 2-D rotation */
    aff2->Rotate(0, 1, -0.57, 1);
    std::cout << "Result of 2-D rotation:" << std::endl;
    aff2->Print( std::cout );

    /* Compose with a shear */
    aff2->Shear(1, 0, .2);
    std::cout << "Result of shear:" << std::endl;
    aff2->Print( std::cout );

    /* Transform a point */
    itk::Point<double, 2> u2, v2;
    u2[0] = 3;
    u2[1] = 5;
    v2 = aff2->TransformPoint(u2);
    std::cout << "Transform a point:" << std::endl
              << v2[0] << " , " << v2[1] << std::endl;

    /* Back transform a point */
    //v2 = aff2->BackTransform(u2);
    //std::cout << "Back transform a point:" << std::endl
              //<< v2[0] << " , " << v2[1] << std::endl;

    /* Transform a vnl_vector */
    vnl_vector_fixed<double, 2> x2, y2;
    x2[0] = 1;
    x2[1] = 2;
    y2 = aff2->TransformVector(x2);
    std::cout << "Transform a vnl_vector:" << std::endl
              << y2[0] << " , " << y2[1] << std::endl;

    /* Back transform a vector */
    //y2 = aff2->BackTransform(x2);
    //std::cout << "Back transform a vnl_vector:" << std::endl
              //<< y2[0] << " , " << y2[1] << std::endl;

    /* Transform a vector */
    itk::Vector<double, 2> u3, v3;
    u3[0] = 3;
    u3[1] = 5;
    v3 = aff2->TransformVector(u3);
    std::cout << "Transform a vector:" << std::endl
              << v3[0] << " , " << v3[1] << std::endl;

    /* Back transform a vector */
    //v3 = aff2->BackTransform(u3);
    //std::cout << "Back transform a vector :" << std::endl
              //<< v3[0] << " , " << v3[1] << std::endl;

    /* Transform a Covariant vector */
    itk::Vector<double, 2> u4, v4;
    u4[0] = 3;
    u4[1] = 5;
    v4 = aff2->TransformVector(u4);
    std::cout << "Transform a Covariant vector:" << std::endl
              << v4[0] << " , " << v4[1] << std::endl;

    /* Back transform a vector */
    //v4 = aff2->BackTransform(u4);
    //std::cout << "Back transform a vector :" << std::endl
              //<< v4[0] << " , " << v4[1] << std::endl;



    /* Create a 3D transform and rotate in 3D */
    typedef itk::AffineTransform<double,3> Affine3DType;
    Affine3DType::Pointer aff3 = Affine3DType::New();
    itk::Vector<double,3> axis;
    axis[0] = .707;
    axis[1] = .707;
    axis[2] = .707;
    aff3->Rotate3D(axis, 1.0, 1);
    std::cout << "Create and rotate a 3D transform:" << std::endl;
    aff3->Print( std::cout );

    /* Generate inverse transform */
    Affine3DType::Pointer inv3 = Affine3DType::New();
    if(!aff3->GetInverse(inv3))
      {
      std::cout << "Cannot compute inverse transformation" << std::endl;
      return EXIT_FAILURE;
      }
    std::cout << "Create an inverse transformation:" << std::endl;
    inv3->Print( std::cout );

   
    /* Test output of GetJacobian */
    Affine3DType::Pointer jaff = Affine3DType::New();
    Affine3DType::MatrixType jaffMatrix = jaff->GetMatrix();
    Affine3DType::OffsetType jaffVector = jaff->GetOffset();

    Affine3DType::InputPointType jpoint;
    jpoint[0] = 5.0;
    jpoint[1] = 10.0;
    jpoint[2] = 15.0; 
    Affine3DType::JacobianType jaffJacobian = jaff->GetJacobian( jpoint );

    std::cout << "GetJacobian: " << std::endl;
    std::cout << jaffJacobian << std::endl;
    
    /* Test SetParameters */
    Affine3DType::Pointer paff = Affine3DType::New();
    Affine3DType::ParametersType parameters1( paff->GetNumberOfParameters() );

    /* set up a 3x3 magic square matrix */
    parameters1[0] = 8;
    parameters1[1] = 1;
    parameters1[2] = 6;
    parameters1[3] = 3;
    parameters1[4] = 5;
    parameters1[5] = 7;
    parameters1[6] = 4;
    parameters1[7] = 9;
    parameters1[8] = 2;

    parameters1[9] = 5;
    parameters1[10] = 5;
    parameters1[11] = 5;
    
    paff->Print( std::cout );
    paff->SetParameters( parameters1 );
    paff->Print( std::cout );

    paff->SetIdentity();
    paff->Print( std::cout );


    {
    // Test SetParameters and GetInverse
    typedef itk::AffineTransform<double,2> TransformType;
    TransformType::Pointer transform = TransformType::New();

    TransformType::ParametersType parameters2;
    TransformType::ParametersType expectedParameters;
    expectedParameters.SetSize( transform->GetNumberOfParameters() );

    double epsilon = 1e-10;

    // check the returned parameters

    // Test 1: SetIdentity
    transform->SetIdentity();
    parameters2 = transform->GetParameters();

    expectedParameters.Fill( 0.0 );
    expectedParameters[0] = 1.0;
    expectedParameters[3] = 1.0;

    for( unsigned int k = 0; k < transform->GetNumberOfParameters(); k++ )
      {
      if( fabs( parameters2[k] - expectedParameters[k] ) > epsilon )
        {
        std::cout << "Test failed:" << std::endl;
        std::cout << "Results=" << parameters2 << std::endl;
        std::cout << "Expected=" << expectedParameters << std::endl;
        any = true;
        break;
        }
      }


    // Test 2: SetParameters
    expectedParameters.Fill( 0.0 );
    expectedParameters[0] = 2.0;
    expectedParameters[3] = 2.0;

    transform->SetParameters( expectedParameters );
    parameters2 = transform->GetParameters();

    for( unsigned int k = 0; k < transform->GetNumberOfParameters(); k++ )
      {
      if( fabs( parameters2[k] - expectedParameters[k] ) > epsilon )
        {
        std::cout << "Test failed:" << std::endl;
        std::cout << "Results=" << parameters2 << std::endl;
        std::cout << "Expected=" << expectedParameters << std::endl;
        any = true;
        break;
        }
      }


    // Test 3: GetInverse
    expectedParameters.Fill( 0.0 );
    expectedParameters[0] = 2.0;
    expectedParameters[3] = 2.0;

    transform->SetParameters( expectedParameters );

    TransformType::Pointer other = TransformType::New();
    transform->GetInverse( other );

    parameters2 = other->GetParameters();

    expectedParameters.Fill( 0.0 );
    expectedParameters[0] = 0.5;
    expectedParameters[3] = 0.5;
    
    other->Print( std::cout );

    for( unsigned int k = 0; k < transform->GetNumberOfParameters(); k++ )
      {
      if( fabs( parameters2[k] - expectedParameters[k] ) > epsilon )
        {
        std::cout << "Test failed:" << std::endl;
        std::cout << "Results=" << parameters2 << std::endl;
        std::cout << "Expected=" << expectedParameters << std::endl;
        any = true;
        break;
        }
      }

    // Try to invert a singular transform
    TransformType::Pointer singularTransform = TransformType::New();
    TransformType::Pointer singularTransformInverse = TransformType::New();
    singularTransform->Scale(0.0);
    if (!singularTransform->GetInverse(singularTransformInverse))
      {
      std::cout << "Detected an attempt to invert a singular transform as expected" << std::endl;
      }
    else
      {
      std::cout << "Failed to detect an attempt to invert a singular transform!" << std::endl;
      return EXIT_FAILURE;
      }
}

    return any;
}