1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkMahalanobisDistanceThresholdImageFunctionTest.cxx,v $
Language: C++
Date: $Date: 2004-08-08 13:39:21 $
Version: $Revision: 1.5 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include <stdio.h>
#include "itkMahalanobisDistanceThresholdImageFunction.h"
#include "itkImage.h"
#include "itkRGBPixel.h"
int itkMahalanobisDistanceThresholdImageFunctionTest(int, char* [] )
{
const unsigned int Dimension = 3;
typedef unsigned char PixelComponentType;
typedef itk::RGBPixel<PixelComponentType> PixelType;
typedef itk::Image< PixelType, Dimension > ImageType;
typedef itk::MahalanobisDistanceThresholdImageFunction< ImageType > FunctionType;
// Create and allocate the image
ImageType::Pointer image = ImageType::New();
ImageType::SizeType size;
ImageType::IndexType start;
ImageType::RegionType region;
size[0] = 50;
size[1] = 50;
size[2] = 50;
start.Fill( 0 );
region.SetIndex( start );
region.SetSize( size );
image->SetRegions( region );
image->Allocate();
ImageType::PixelType initialValue;
initialValue[0] = 11;
initialValue[1] = 22;
initialValue[2] = 33;
image->FillBuffer( initialValue );
FunctionType::Pointer function = FunctionType::New();
function->SetInputImage( image );
const double threshold = 5.0;
function->SetThreshold( threshold );
typedef vnl_matrix<double> CovarianceType;
typedef vnl_vector<double> MeanType;
CovarianceType Covariance( Dimension, Dimension );
MeanType Mean( Dimension );
Mean[0] = 10.0;
Mean[1] = 20.0;
Mean[2] = 30.0;
Covariance.fill( 0.0 );
Covariance[0][0] = 100.0;
Covariance[1][1] = 200.0;
Covariance[2][2] = 300.0;
function->SetCovariance( Covariance );
function->SetMean( Mean );
ImageType::IndexType index;
index[0] = 25;
index[1] = 25;
index[2] = 25;
FunctionType::OutputType belongs;
belongs = function->EvaluateAtIndex( index );
std::cout << "function->EvaluateAtIndex( index ): " << belongs << std::endl;
if( !belongs )
{
std::cerr << "Error in EvaluateAtIndex() we were expecting true and got false" << std::endl;
return EXIT_FAILURE;
}
const double distance = function->EvaluateDistanceAtIndex( index );
std::cout << "function->EvaluateDistanceAtIndex( index ): " << distance << std::endl;
const double expectedDistance = 0.244949;
if( fabs(distance - expectedDistance) > 1e-5 )
{
std::cerr << "Error in distance computation in EvaluateDistanceAtIndex() !!" << std::endl;
std::cerr << "Expected distance value = " << expectedDistance << std::endl;
std::cerr << "Distance obtained value = " << distance << std::endl;
return EXIT_FAILURE;
}
// Test Evaluate
FunctionType::PointType point;
point[0] = 25;
point[1] = 25;
point[2] = 25;
FunctionType::OutputType belongs2;
belongs2 = function->Evaluate(point);
std::cout << "function->Evaluate(point): " << belongs2 << std::endl;
if( !belongs2 )
{
std::cerr << "Error in Evaluate() we were expecting true and got false" << std::endl;
return EXIT_FAILURE;
}
const double distance2 = function->EvaluateDistance(point);
std::cout << "function->EvaluateDistance(point): " << distance2 << std::endl;
if( fabs(distance2 - expectedDistance) > 1e-5 )
{
std::cerr << "Error in distance computation in EvaluateDistance() !!" << std::endl;
std::cerr << "Expected distance value = " << expectedDistance << std::endl;
std::cerr << "Distance obtained value = " << distance2 << std::endl;
return EXIT_FAILURE;
}
// Test EvaluateAtContinuousIndex
FunctionType::ContinuousIndexType cindex;
cindex[0] = 25;
cindex[1] = 25;
cindex[2] = 25;
FunctionType::OutputType belongs3;
belongs3 = function->EvaluateAtContinuousIndex(cindex);
std::cout << "function->EvaluateAtContinuousIndex(cindex): " << belongs3 << std::endl;
if( !belongs3 )
{
std::cerr << "Error in EvaluateAtContinuousIndex() we were expecting true and got false" << std::endl;
return EXIT_FAILURE;
}
// Test GetConstReferenceMacro
const double & getThreshold = function->GetThreshold();
std::cout << "function->GetThreshold(): " << getThreshold << std::endl;
if( fabs( threshold - getThreshold ) > 1e-9 )
{
std::cerr << "Error: Set/Get Threshold do not match" << std::endl;
return EXIT_FAILURE;
}
// Exercise GetMean() and GetCovariance()
Mean = function->GetMean();
Covariance = function->GetCovariance();
std::cout << "Test PASSED ! " << std::endl;
return EXIT_SUCCESS;
}
|