1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: NNetClassifierTest1.cxx,v $
Language: C++
Date: $Date: 2007-08-18 15:16:57 $
Version: $Revision: 1.6 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
//#define USE_REVIEW_NETIO
#ifdef USE_REVIEW_NETIO
#include "itkNeuralNetworkFileReader.h"
#include "itkNeuralNetworkFileWriter.h"
#endif
#include "itkOneHiddenLayerBackPropagationNeuralNetwork.h"
#include "itkIterativeSupervisedTrainingFunction.h"
#include "itkBatchSupervisedTrainingFunction.h"
#include "itkVector.h"
#include "itkArray.h"
#include "itkListSample.h"
#include <vector>
#include <fstream>
#define ROUND(x) (floor(x+0.5))
typedef itk::Array<double> MeasurementVectorType;
typedef itk::Array<double> TargetVectorType;
typedef itk::Statistics::ListSample<TargetVectorType> TargetType;
typedef itk::Statistics::ListSample<MeasurementVectorType> SampleType;
typedef itk::Statistics::OneHiddenLayerBackPropagationNeuralNetwork<MeasurementVectorType, TargetVectorType> OneHiddenLayerBackPropagationNeuralNetworkType;
static int TestNetwork(SampleType::Pointer TestSample, TargetType::Pointer TestTargets,
OneHiddenLayerBackPropagationNeuralNetworkType::Pointer OneHiddenLayerNetwork)
{
//Network Simulation
std::cout << TestSample->Size() << std::endl;
std::cout << "Network Simulation" << std::endl;
SampleType::ConstIterator iter1 = TestSample->Begin();
TargetType::ConstIterator iter2 = TestTargets->Begin();
unsigned int error1 = 0 ;
unsigned int error2 = 0 ;
int flag;
std::ofstream outfile;
outfile.open("out1.txt",std::ios::out);
while (iter1 != TestSample->End())
{
MeasurementVectorType mv = iter1.GetMeasurementVector();
TargetVectorType tv = iter2.GetMeasurementVector();
TargetVectorType ov = OneHiddenLayerNetwork->GenerateOutput(mv);
flag = 0;
if (fabs(tv[0]-ov[0])>0.2)
{
outfile<<fabs(tv[0]-ov[0])<<std::endl;
flag = 1;
}
if (flag == 1 && ROUND(tv[0]) == 1)
{
++error1;
}
else if (flag == 1 && ROUND(tv[0]) == -1)
{
++error2;
}
std::cout << "Network Input = " << mv << std::endl;
std::cout << "Network Output = " << ov << std::endl;
std::cout << "Target = " << tv << std::endl;
++iter1;
++iter2;
}
std::cout << "Among "<<TestSample->Size()<<" measurement vectors, " << error1 + error2
<< " vectors are misclassified." << std::endl ;
std::cout<<"Network Weights and Biases after Training= "<<std::endl;
std::cout << OneHiddenLayerNetwork << std::endl;
if (double(error1 / 10) > 2 || double(error2 / 10) > 2)
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
int
NNetClassifierTest1(int argc, char* argv[])
{
if (argc < 2)
{
std::cout << "ERROR: data file name argument missing." << std::endl ;
return EXIT_FAILURE;
}
int num_train=800;
int num_test=200;
char* trainFileName = argv[1]; //"train.txt"; //argv[1];
char* testFileName = argv[2]; //"test.txt"; //argv[2];
int num_input_nodes = 2;
int num_hidden_nodes = 5;
int num_output_nodes = 1;
typedef itk::Statistics::BatchSupervisedTrainingFunction<SampleType, TargetType, double> TrainingFcnType;
MeasurementVectorType mv;
TargetVectorType tv;
TargetVectorType ov;
mv.SetSize(num_input_nodes);
ov.SetSize(num_output_nodes);
tv.SetSize(num_output_nodes);
SampleType::Pointer trainsample = SampleType::New();
SampleType::Pointer testsample = SampleType::New();
TargetType::Pointer traintargets = TargetType::New();
TargetType::Pointer testtargets = TargetType::New();
trainsample->SetMeasurementVectorSize( num_input_nodes);
traintargets->SetMeasurementVectorSize( num_output_nodes);
testsample->SetMeasurementVectorSize( num_input_nodes);
testtargets->SetMeasurementVectorSize( num_output_nodes);
std::ifstream infile1;
infile1.open(trainFileName, std::ios::in);
for (int a = 0; a < num_train; a++)
{
for (int i = 0; i < num_input_nodes; i++)
{
infile1 >> mv[i];
}
infile1 >> tv[0];
trainsample->PushBack(mv);
traintargets->PushBack(tv);
std::cout << "Input =" << mv << std::endl;
std::cout << "target =" << tv << std::endl;
}
infile1.close();
std::ifstream infile2;
infile2.open(testFileName, std::ios::in);
for (int a = 0; a < num_test; a++)
{
for (int i = 0; i < num_input_nodes; i++)
{
infile2 >> mv[i];
}
infile2 >> tv[0];
testsample->PushBack(mv);
testtargets->PushBack(tv);
std::cout << "Input =" << mv << std::endl;
std::cout << "target =" << tv << std::endl;
}
infile2.close();
OneHiddenLayerBackPropagationNeuralNetworkType::Pointer OneHiddenLayerNet = OneHiddenLayerBackPropagationNeuralNetworkType::New();
OneHiddenLayerNet->SetNumOfInputNodes(num_input_nodes);
OneHiddenLayerNet->SetNumOfFirstHiddenNodes(num_hidden_nodes);
OneHiddenLayerNet->SetNumOfOutputNodes(num_output_nodes);
OneHiddenLayerNet->Initialize();
OneHiddenLayerNet->InitializeWeights();
OneHiddenLayerNet->SetLearningRate(0.001);
TrainingFcnType::Pointer trainingfcn = TrainingFcnType::New();
trainingfcn->SetIterations(200);
trainingfcn->Train(OneHiddenLayerNet, trainsample, traintargets);
int return_value1=TestNetwork(testsample,testtargets,OneHiddenLayerNet);
int return_value2=EXIT_SUCCESS;
#ifdef USE_REVIEW_NETIO
{//Test Reading and writing.
typedef itk::Statistics::OneHiddenLayerBackPropagationNeuralNetwork<MeasurementVectorType, TargetVectorType> OneHiddenLayerBackPropagationNeuralNetworkType;
std::string TestOneHiddenLayerNetFileName("/tmp/OneLayer.net");
{
typedef itk::NeuralNetworkFileWriter<OneHiddenLayerBackPropagationNeuralNetworkType> OHLWriterType;
OHLWriterType::Pointer writerOneHiddenLayerBackPropagation=OHLWriterType::New();
writerOneHiddenLayerBackPropagation->SetWriteWeightValuesType(OHLWriterType::ASCII);
writerOneHiddenLayerBackPropagation->SetFileName(TestOneHiddenLayerNetFileName);
writerOneHiddenLayerBackPropagation->SetInput(OneHiddenLayerNet);
writerOneHiddenLayerBackPropagation->Update();
}
{
typedef itk::NeuralNetworkFileReader<OneHiddenLayerBackPropagationNeuralNetworkType> OHLReaderType;
OHLReaderType::Pointer readerOneHiddenLayerBackPropagation=OHLReaderType::New();
readerOneHiddenLayerBackPropagation->SetFileName(TestOneHiddenLayerNetFileName);
readerOneHiddenLayerBackPropagation->SetReadWeightValuesType( OHLReaderType::ASCII );
readerOneHiddenLayerBackPropagation->Update();
//The following line gives a compiler error
OneHiddenLayerBackPropagationNeuralNetworkType::Pointer OneHiddenLayerNet_ReadIn = readerOneHiddenLayerBackPropagation->GetOutput();
return_value2=TestNetwork(testsample,testtargets,OneHiddenLayerNet_ReadIn);
}
}
#endif
if(return_value1 == EXIT_FAILURE || return_value2 == EXIT_FAILURE)
{
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|