File: NNetClassifierTest1.cxx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (207 lines) | stat: -rw-r--r-- 7,557 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: NNetClassifierTest1.cxx,v $
  Language:  C++
  Date:      $Date: 2007-08-18 15:16:57 $
  Version:   $Revision: 1.6 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
//#define USE_REVIEW_NETIO
#ifdef USE_REVIEW_NETIO
#include "itkNeuralNetworkFileReader.h"
#include "itkNeuralNetworkFileWriter.h"
#endif

#include "itkOneHiddenLayerBackPropagationNeuralNetwork.h"
#include "itkIterativeSupervisedTrainingFunction.h"
#include "itkBatchSupervisedTrainingFunction.h"
#include "itkVector.h"
#include "itkArray.h"
#include "itkListSample.h"
#include <vector>
#include <fstream>

#define ROUND(x) (floor(x+0.5))

typedef itk::Array<double> MeasurementVectorType;
typedef itk::Array<double> TargetVectorType;
typedef itk::Statistics::ListSample<TargetVectorType> TargetType;
typedef itk::Statistics::ListSample<MeasurementVectorType> SampleType;
typedef itk::Statistics::OneHiddenLayerBackPropagationNeuralNetwork<MeasurementVectorType, TargetVectorType> OneHiddenLayerBackPropagationNeuralNetworkType;


static int TestNetwork(SampleType::Pointer TestSample, TargetType::Pointer TestTargets,
  OneHiddenLayerBackPropagationNeuralNetworkType::Pointer OneHiddenLayerNetwork)
{
  //Network Simulation
  std::cout << TestSample->Size() << std::endl;
  std::cout << "Network Simulation" << std::endl;
  SampleType::ConstIterator iter1 = TestSample->Begin();
  TargetType::ConstIterator iter2 = TestTargets->Begin();
  unsigned int error1 = 0 ;
  unsigned int error2 = 0 ;
  int flag;
  std::ofstream outfile;
  outfile.open("out1.txt",std::ios::out);
  while (iter1 != TestSample->End())
    {
    MeasurementVectorType mv = iter1.GetMeasurementVector();
    TargetVectorType tv = iter2.GetMeasurementVector();
    TargetVectorType ov = OneHiddenLayerNetwork->GenerateOutput(mv);
    flag = 0;
    if (fabs(tv[0]-ov[0])>0.2)
      {
      outfile<<fabs(tv[0]-ov[0])<<std::endl;
      flag = 1;
      }
    if (flag == 1 && ROUND(tv[0]) == 1)
      {
      ++error1;
      }
    else if (flag == 1 && ROUND(tv[0]) == -1)
      {
      ++error2;
      }
    std::cout << "Network Input = " << mv << std::endl;
    std::cout << "Network Output = " << ov << std::endl;
    std::cout << "Target = " << tv << std::endl;
    ++iter1;
    ++iter2;
    }

  std::cout << "Among "<<TestSample->Size()<<" measurement vectors, " << error1 + error2
    << " vectors are misclassified." << std::endl ;
  std::cout<<"Network Weights and Biases after Training= "<<std::endl;
  std::cout << OneHiddenLayerNetwork << std::endl;
  if (double(error1 / 10) > 2 || double(error2 / 10) > 2)
    {
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
    }
  return EXIT_SUCCESS;
}

int
NNetClassifierTest1(int argc, char* argv[])
{
  if (argc < 2)
    {
    std::cout << "ERROR: data file name argument missing." << std::endl ;
    return EXIT_FAILURE;
    }

  int num_train=800;
  int num_test=200;

  char* trainFileName = argv[1]; //"train.txt"; //argv[1];
  char* testFileName = argv[2]; //"test.txt"; //argv[2];

  int num_input_nodes = 2;
  int num_hidden_nodes = 5;
  int num_output_nodes = 1;

  typedef itk::Statistics::BatchSupervisedTrainingFunction<SampleType, TargetType, double> TrainingFcnType;

  MeasurementVectorType mv;
  TargetVectorType tv;
  TargetVectorType ov;
  mv.SetSize(num_input_nodes);
  ov.SetSize(num_output_nodes);
  tv.SetSize(num_output_nodes);

  SampleType::Pointer trainsample = SampleType::New();
  SampleType::Pointer testsample = SampleType::New();
  TargetType::Pointer traintargets = TargetType::New();
  TargetType::Pointer testtargets = TargetType::New();
  trainsample->SetMeasurementVectorSize( num_input_nodes);
  traintargets->SetMeasurementVectorSize( num_output_nodes);
  testsample->SetMeasurementVectorSize( num_input_nodes);
  testtargets->SetMeasurementVectorSize( num_output_nodes);

  std::ifstream infile1;
  infile1.open(trainFileName, std::ios::in);

  for (int a = 0; a < num_train; a++)
    {
    for (int i = 0; i < num_input_nodes; i++)
      {
      infile1 >> mv[i];
      }
    infile1 >> tv[0];
    trainsample->PushBack(mv);
    traintargets->PushBack(tv);
    std::cout << "Input =" << mv << std::endl;
    std::cout << "target =" << tv << std::endl;
    }
  infile1.close();

  std::ifstream infile2;
  infile2.open(testFileName, std::ios::in);
  for (int a = 0; a < num_test; a++)
    {
    for (int i = 0; i < num_input_nodes; i++)
      {
      infile2 >> mv[i];
      }
    infile2 >> tv[0];
    testsample->PushBack(mv);
    testtargets->PushBack(tv);
    std::cout << "Input =" << mv << std::endl;
    std::cout << "target =" << tv << std::endl;
    }
  infile2.close();

  OneHiddenLayerBackPropagationNeuralNetworkType::Pointer OneHiddenLayerNet = OneHiddenLayerBackPropagationNeuralNetworkType::New();
  OneHiddenLayerNet->SetNumOfInputNodes(num_input_nodes);
  OneHiddenLayerNet->SetNumOfFirstHiddenNodes(num_hidden_nodes);
  OneHiddenLayerNet->SetNumOfOutputNodes(num_output_nodes);

  OneHiddenLayerNet->Initialize();
  OneHiddenLayerNet->InitializeWeights();
  OneHiddenLayerNet->SetLearningRate(0.001);

  TrainingFcnType::Pointer trainingfcn = TrainingFcnType::New();
  trainingfcn->SetIterations(200);
  trainingfcn->Train(OneHiddenLayerNet, trainsample, traintargets);
  int return_value1=TestNetwork(testsample,testtargets,OneHiddenLayerNet);
  int return_value2=EXIT_SUCCESS;

#ifdef USE_REVIEW_NETIO
    {//Test Reading and writing.
    typedef itk::Statistics::OneHiddenLayerBackPropagationNeuralNetwork<MeasurementVectorType, TargetVectorType> OneHiddenLayerBackPropagationNeuralNetworkType;
    std::string TestOneHiddenLayerNetFileName("/tmp/OneLayer.net");
    {
    typedef itk::NeuralNetworkFileWriter<OneHiddenLayerBackPropagationNeuralNetworkType> OHLWriterType;
    OHLWriterType::Pointer writerOneHiddenLayerBackPropagation=OHLWriterType::New();
    writerOneHiddenLayerBackPropagation->SetWriteWeightValuesType(OHLWriterType::ASCII);
    writerOneHiddenLayerBackPropagation->SetFileName(TestOneHiddenLayerNetFileName);
    writerOneHiddenLayerBackPropagation->SetInput(OneHiddenLayerNet);
    writerOneHiddenLayerBackPropagation->Update();
    }
    {
    typedef itk::NeuralNetworkFileReader<OneHiddenLayerBackPropagationNeuralNetworkType> OHLReaderType;
    OHLReaderType::Pointer readerOneHiddenLayerBackPropagation=OHLReaderType::New();
    readerOneHiddenLayerBackPropagation->SetFileName(TestOneHiddenLayerNetFileName);
    readerOneHiddenLayerBackPropagation->SetReadWeightValuesType( OHLReaderType::ASCII );
    readerOneHiddenLayerBackPropagation->Update();
    //The following line gives a compiler error
    OneHiddenLayerBackPropagationNeuralNetworkType::Pointer OneHiddenLayerNet_ReadIn = readerOneHiddenLayerBackPropagation->GetOutput();
    return_value2=TestNetwork(testsample,testtargets,OneHiddenLayerNet_ReadIn);
    }
    }
#endif
  if(return_value1 == EXIT_FAILURE || return_value2 == EXIT_FAILURE)
    {
    return EXIT_FAILURE;
    }
  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}