1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: NNetClassifierTest2.cxx,v $
Language: C++
Date: $Date: 2007-08-17 13:10:57 $
Version: $Revision: 1.5 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "itkTwoHiddenLayerBackPropagationNeuralNetwork.h"
#include "itkIterativeSupervisedTrainingFunction.h"
#include "itkBatchSupervisedTrainingFunction.h"
#include "itkVector.h"
#include "itkListSample.h"
#include <vector>
#include <fstream>
#define ROUND(x) (floor(x+0.5))
int
NNetClassifierTest2(int argc, char* argv[])
{
if (argc < 2)
{
std::cout << "ERROR: data file name argument missing." << std::endl ;
return EXIT_FAILURE;
}
int num_train=800;
int num_test=200;
char* trainFileName = argv[1];
char* testFileName = argv[2];
const int num_input_nodes = 2;
const int num_hidden1_nodes = 3;
const int num_hidden2_nodes = 2;
const int num_output_nodes = 1;
typedef itk::Vector<double, num_input_nodes> MeasurementVectorType;
typedef itk::Vector<double, num_output_nodes> TargetVectorType;
typedef itk::Statistics::ListSample<MeasurementVectorType> SampleType;
typedef itk::Statistics::ListSample<TargetVectorType> TargetType;
typedef itk::Statistics::IterativeSupervisedTrainingFunction<SampleType, TargetType, double> TrainingFcnType;
MeasurementVectorType mv;
TargetVectorType tv;
TargetVectorType ov;
SampleType::Pointer trainsample = SampleType::New();
SampleType::Pointer testsample = SampleType::New();
TargetType::Pointer traintargets = TargetType::New();
TargetType::Pointer testtargets = TargetType::New();
trainsample->SetMeasurementVectorSize( num_input_nodes);
traintargets->SetMeasurementVectorSize( num_output_nodes);
testsample->SetMeasurementVectorSize( num_input_nodes);
testtargets->SetMeasurementVectorSize( num_output_nodes);
std::ifstream infile1;
infile1.open(trainFileName, std::ios::in);
for (int a = 0; a < num_train; a++)
{
for (int i = 0; i < num_input_nodes; i++)
{
infile1 >> mv[i];
}
infile1 >> tv[0];
trainsample->PushBack(mv);
traintargets->PushBack(tv);
}
infile1.close();
std::ifstream infile2;
infile2.open(testFileName, std::ios::in);
for (int a = 0; a < num_test; a++)
{
for (int i = 0; i < num_input_nodes; i++)
{
infile2 >> mv[i];
}
infile2 >> tv[0];
testsample->PushBack(mv);
testtargets->PushBack(tv);
}
infile2.close();
typedef itk::Statistics::TwoHiddenLayerBackPropagationNeuralNetwork<MeasurementVectorType, TargetVectorType> TwoHiddenLayerBackPropagationNeuralNetworkType;
TwoHiddenLayerBackPropagationNeuralNetworkType::Pointer net1 = TwoHiddenLayerBackPropagationNeuralNetworkType::New();
net1->SetNumOfInputNodes(num_input_nodes);
net1->SetNumOfFirstHiddenNodes(num_hidden1_nodes);
net1->SetNumOfSecondHiddenNodes(num_hidden2_nodes);
net1->SetNumOfOutputNodes(num_output_nodes);
net1->Initialize();
net1->InitializeWeights();
net1->SetLearningRate(0.05);
TrainingFcnType::Pointer trainingfcn = TrainingFcnType::New();
trainingfcn->SetIterations(5000);
trainingfcn->SetThreshold(0.0001);
trainingfcn->Train(net1, trainsample, traintargets);
//Network Simulation
std::cout << testsample->Size() << std::endl;
std::cout << "Network Simulation" << std::endl;
SampleType::ConstIterator iter1 = testsample->Begin();
TargetType::ConstIterator iter2 = testtargets->Begin();
unsigned int error1 = 0 ;
unsigned int error2 = 0 ;
int flag;
std::ofstream outfile;
outfile.open("out1.txt",std::ios::out);
while (iter1 != testsample->End())
{
mv = iter1.GetMeasurementVector();
tv = iter2.GetMeasurementVector();
ov.Set_vnl_vector(net1->GenerateOutput(mv));
flag=0;
if (fabs(tv[0]-ov[0])>0.3)
{
flag = 1;
}
if (flag == 1 && ROUND(tv[0]) == 1)
{
++error1;
}
else if (flag == 1 && ROUND(tv[0]) == -1)
{
++error2;
}
outfile<<mv[0]<<" "<<mv[1]<<" "<<tv[0]<<" "<<ov[0]<<std::endl;
std::cout << "Network Input = " << mv << std::endl;
std::cout << "Network Output = " << ov << std::endl;
std::cout << "Target = " << tv << std::endl;
++iter1;
++iter2;
}
std::cout << "Among "<<num_test<<" measurement vectors, " << error1 + error2
<< " vectors are misclassified." << std::endl ;
std::cout<<"Network Weights = "<<std::endl;
std::cout << net1 << std::endl;
if (double(error1 / 10) > 2 || double(error2 / 10) > 2)
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|