File: RBFTest1.cxx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (277 lines) | stat: -rw-r--r-- 8,526 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/*=========================================================================

Program:   Insight Segmentation & Registration Toolkit
Module:    $RCSfile: RBFTest1.cxx,v $
Language:  C++
Date:      $Date: 2007-08-17 13:10:57 $
Version:   $Revision: 1.5 $

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even 
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

// some compilers have trouble with the size of this test
#define ITK_LEAN_AND_MEAN

#include "itkGaussianRadialBasisFunction.h"
#include "itkMultiquadricRadialBasisFunction.h"
#include "itkIterativeSupervisedTrainingFunction.h"
#include "itkBatchSupervisedTrainingFunction.h"
#include "itkRBFNetwork.h"
#include "itkRBFLayer.h"
#include "itkVector.h"
#include "itkArray.h"
#include "itkListSample.h"
#include <vector>
#include <fstream>

#include "itkEuclideanDistance.h"
#include "itkKdTree.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkMinimumDecisionRule.h"
#include "itkEuclideanDistance.h"
#include "itkSampleClassifier.h"
#include "itkRBFBackPropagationLearningFunction.h"

#define ROUND(x) (floor(x+0.5))

  int
RBFTest1(int argc, char* argv[])
{
  if (argc < 2)
    {
    std::cout << "ERROR: data file name argument missing." << std::endl ;
    return EXIT_FAILURE;
    }
  int num_input_nodes = 3;
  int num_hidden_nodes = 2;  // 2 2 radial basis functions
  int num_output_nodes = 2;

  typedef itk::Array<double> MeasurementVectorType;
  typedef itk::Array<double> TargetVectorType;

  typedef itk::Statistics::ListSample<MeasurementVectorType> SampleType;
  typedef itk::Statistics::ListSample<TargetVectorType> TargetType;

  typedef itk::Statistics::EuclideanDistance<MeasurementVectorType> DistanceMetricType; 

  int num_train=1000;
  int num_test=200;

  MeasurementVectorType mv(num_input_nodes);
  TargetVectorType tv(num_output_nodes);
  TargetVectorType ov(num_output_nodes);
  SampleType::Pointer trainsample = SampleType::New();
  SampleType::Pointer testsample = SampleType::New();
  TargetType::Pointer traintargets = TargetType::New();
  TargetType::Pointer testtargets = TargetType::New();
  trainsample->SetMeasurementVectorSize( num_input_nodes);
  traintargets->SetMeasurementVectorSize( num_output_nodes);
  testsample->SetMeasurementVectorSize( num_input_nodes);
  testtargets->SetMeasurementVectorSize( num_output_nodes);

  char* trainFileName = argv[1];
  char* testFileName = argv[2];

  std::ifstream infile1;
  infile1.open(trainFileName, std::ios::in);

  for (int a = 0; a < num_train; a++)
    {
    for (int i = 0; i < num_input_nodes; i++)
      {
      infile1 >> mv[i];
      }
    for (int i = 0; i < num_output_nodes; i++)
      {
      infile1 >> tv[i];
      }
    trainsample->PushBack(mv);
    traintargets->PushBack(tv);
    }
  infile1.close();
  std::ifstream infile2;
  infile2.open(testFileName, std::ios::in);
  for (int a = 0; a < num_test; a++)
    {
    for (int i = 0; i < num_input_nodes; i++)
      {
      infile2 >> mv[i];
      }
    for (int i = 0; i < num_output_nodes; i++)
      {
      infile2 >> tv[i];
      }
    testsample->PushBack(mv);
    testtargets->PushBack(tv);
    }
  infile2.close();

  typedef itk::Statistics::RBFNetwork<MeasurementVectorType, TargetVectorType>
    RBFNetworkType;
  std::cout<<trainsample->Size()<<std::endl;
  RBFNetworkType::Pointer net1 = RBFNetworkType::New();
  net1->SetNumOfInputNodes(num_input_nodes);
  net1->SetNumOfFirstHiddenNodes(num_hidden_nodes);
  net1->SetNumOfOutputNodes(num_output_nodes);
  net1->SetFirstHiddenLayerBias(1.0);
  net1->SetOutputLayerBias(1.0);
  net1->SetClasses(2);

  typedef itk::Statistics::RBFBackPropagationLearningFunction<
    RBFNetworkType::LayerInterfaceType, TargetVectorType> RBFLearningFunctionType;
  RBFLearningFunctionType::Pointer learningfunction=RBFLearningFunctionType::New();

  net1->SetLearningFunction(learningfunction.GetPointer());


  //Kmeans Initialization of RBF Centers
  typedef itk::Statistics::WeightedCentroidKdTreeGenerator< SampleType >
    TreeGeneratorType;
  TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New();

  treeGenerator->SetSample( trainsample );
  treeGenerator->SetBucketSize( 16 );
  treeGenerator->Update(); 

  typedef TreeGeneratorType::KdTreeType TreeType;
  typedef itk::Statistics::KdTreeBasedKmeansEstimator<TreeType> EstimatorType;
  EstimatorType::Pointer estimator = EstimatorType::New();

  int m1 = rand() % num_train; 
  int m2 = rand() % num_train; 
  MeasurementVectorType c1 = trainsample->GetMeasurementVector(m1);
  MeasurementVectorType c2 =  trainsample->GetMeasurementVector(m2);

  EstimatorType::ParametersType initialMeans(6);
  for(int i=0; i<3; i++)
    {
    initialMeans[i] = c1[i];
    }
  for(int i=3; i<6; i++)   
    {
    initialMeans[i] = c2[i-3];
    }
  std::cout << c1 << " " << c2 <<std::endl;

  estimator->SetParameters( initialMeans );
  estimator->SetKdTree( treeGenerator->GetOutput() );
  estimator->SetMaximumIteration( 200 );
  estimator->SetCentroidPositionChangesThreshold(0.0);

  estimator->StartOptimization();

  EstimatorType::ParametersType estimatedMeans = estimator->GetParameters();
  std::cout << estimatedMeans.size() << std::endl;
  std::cout << estimatedMeans << std::endl;

  MeasurementVectorType initialcenter1(num_input_nodes);
  initialcenter1[0]=estimatedMeans[0]; //110;
  initialcenter1[1]=estimatedMeans[1]; //250;
  initialcenter1[2]=estimatedMeans[2]; //50;
  net1->SetCenter(initialcenter1);

  MeasurementVectorType initialcenter2(num_input_nodes);
  initialcenter2[0]=estimatedMeans[3]; //99;
  initialcenter2[1]=estimatedMeans[4]; //199;
  initialcenter2[2]=estimatedMeans[5]; //300;
  net1->SetCenter(initialcenter2);

  DistanceMetricType::Pointer DistanceMetric = DistanceMetricType::New();
  double width = DistanceMetric->Evaluate(initialcenter1,initialcenter2);

  net1->SetRadius(2*width);
  net1->SetRadius(2*width);

  net1->Initialize();
  net1->InitializeWeights();
  net1->SetLearningRate(0.5);

  typedef itk::Statistics::IterativeSupervisedTrainingFunction<SampleType, TargetType, double> TrainingFcnType;

  TrainingFcnType::Pointer trainingfcn = TrainingFcnType::New();
  trainingfcn->SetIterations(500);
  trainingfcn->SetThreshold(0.001); 
  trainingfcn->Train(net1, trainsample, traintargets);

  //Network Simulation
  std::cout << testsample->Size() << std::endl;
  std::cout << "Network Simulation" << std::endl;
  SampleType::ConstIterator iter1 = testsample->Begin();
  TargetType::ConstIterator iter2 = testtargets->Begin();
  unsigned int error1 = 0 ;
  unsigned int error2 = 0 ;
  int flag;
  int class_id;
  std::ofstream outfile;
  outfile.open("out1.txt",std::ios::out);
  int count =0;
  while (iter1 != testsample->End())
    {
    mv = iter1.GetMeasurementVector();
    tv = iter2.GetMeasurementVector();
    ov = net1->GenerateOutput(mv);
    std::cout << "Target = " << tv << std::endl;
    std::cout << "Output = " << ov << std::endl;
    flag=0;
    if(ov[0]>ov[1])
      {
      class_id=1;
      }
    else
      {
      class_id=-1;
      }
    if(class_id==1 && count >100)
      {
      flag =1;
      }
    if(class_id==-1 && count <100)
      {
      flag =2;
      }

    if (flag == 1)
      {
      ++error1;
      }
    else if (flag == 2)
      {
      ++error2;
      }
    outfile << mv << " " << tv << " " << ov << std::endl;
    std::cout << "Network Input = " << mv << std::endl;
    std::cout << "Network Output = " << ov << std::endl;
    std::cout << "Target = " << tv << std::endl;
    ++iter1;
    ++iter2;
    count++;
    }
  std::cout << "Among "<<num_test<<" measurement vectors, " << error1 + error2
    << " vectors are misclassified." << std::endl ;
  std::cout << "Network Weights = " << std::endl;
  std::cout << net1 << std::endl;
  std::cout << error1 << " " << error2 <<std::endl;
  std::cout << "Test passed." << std::endl;

  if (double(error1 / 10) > 5 || double(error2 / 10) > 5)
    {
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
    }


  if (double(error1 / 10) > 2 || double(error2 / 10) > 2)
    {
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
    }

  return EXIT_SUCCESS;
}