1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: XORTest2.cxx,v $
Language: C++
Date: $Date: 2007-08-17 13:10:57 $
Version: $Revision: 1.4 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "itkOneHiddenLayerBackPropagationNeuralNetwork.h"
#include "itkIterativeSupervisedTrainingFunction.h"
#include "itkBatchSupervisedTrainingFunction.h"
#include "itkVector.h"
#include "itkListSample.h"
#include <vector>
#include <fstream>
#define ROUND(x) (floor(x+0.5))
int
XORTest2(int argc, char* argv[])
{
if (argc < 1)
{
std::cout << "ERROR: data file name argument missing." << std::endl ;
return EXIT_FAILURE;
}
char* dataFileName = argv[1] ;
const int num_input_nodes = 2;
const int num_hidden_nodes = 2;
const int num_output_nodes = 1;
typedef itk::Vector<double, num_input_nodes> MeasurementVectorType;
typedef itk::Vector<double, num_output_nodes> TargetVectorType;
typedef itk::Statistics::ListSample<MeasurementVectorType> SampleType;
typedef itk::Statistics::ListSample<TargetVectorType> TargetType;
typedef itk::Statistics::IterativeSupervisedTrainingFunction<SampleType, TargetType, double> TrainingFcnType;
MeasurementVectorType mv;
TargetVectorType tv;
SampleType::Pointer sample = SampleType::New();
TargetType::Pointer targets = TargetType::New();
sample->SetMeasurementVectorSize( num_input_nodes);
targets->SetMeasurementVectorSize( num_output_nodes);
std::ifstream infile1;
infile1.open(dataFileName, std::ios::in);
infile1 >> mv[0] >> mv[1] >> tv[0];
while (!infile1.eof())
{
std::cout << "Input =" << mv << std::endl;
std::cout << "target =" << tv << std::endl;
sample->PushBack(mv);
targets->PushBack(tv);
infile1 >> mv[0] >> mv[1] >> tv[0];
}
infile1.close();
std::cout << sample->Size() << std::endl;
typedef itk::Statistics::OneHiddenLayerBackPropagationNeuralNetwork<MeasurementVectorType, TargetVectorType> OneHiddenLayerBackPropagationNeuralNetworkType;
OneHiddenLayerBackPropagationNeuralNetworkType::Pointer net1 = OneHiddenLayerBackPropagationNeuralNetworkType::New();
net1->SetNumOfInputNodes(num_input_nodes);
net1->SetNumOfFirstHiddenNodes(num_hidden_nodes);
net1->SetNumOfOutputNodes(num_output_nodes);
net1->Initialize();
net1->InitializeWeights();
net1->SetLearningRate(0.01);
TrainingFcnType::Pointer trainingfcn = TrainingFcnType::New();
trainingfcn->SetIterations(20000);
trainingfcn->SetThreshold(0.001);
trainingfcn->Train(net1, sample, targets);
//Network Simulation
std::cout << sample->Size() << std::endl;
std::cout << "Network Simulation" << std::endl;
TargetVectorType ov;
SampleType::ConstIterator iter1 = sample->Begin();
TargetType::ConstIterator iter2 = targets->Begin();
unsigned int error1 = 0 ;
unsigned int error2 = 0 ;
int flag;
std::ofstream outfile;
outfile.open("out1.txt",std::ios::out);
while (iter1 != sample->End())
{
mv = iter1.GetMeasurementVector();
tv = iter2.GetMeasurementVector();
ov.Set_vnl_vector(net1->GenerateOutput(mv));
flag = 0;
if (fabs(tv[0]-ov[0])>0.2)
{
flag = 1;
}
if (flag == 1 && ROUND(tv[0]) == 1)
{
++error1;
}
else if (flag == 1 && ROUND(tv[0]) == -1)
{
++error2;
}
outfile<<mv[0]<<" "<<mv[1]<<" "<<tv[0]<<" "<<ov[0]<<std::endl;
std::cout << "Network Input = " << mv << std::endl;
std::cout << "Network Output = " << ov << std::endl;
std::cout << "Target = " << tv << std::endl;
++iter1;
++iter2;
}
std::cout << "Among 4 measurement vectors, " << error1 + error2
<< " vectors are misclassified." << std::endl ;
std::cout<<"Network Weights and Biases after Training= "<<std::endl;
std::cout << net1 << std::endl;
if ((error1 + error2) > 2)
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|