File: XORTest2.cxx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (138 lines) | stat: -rw-r--r-- 4,484 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: XORTest2.cxx,v $
  Language:  C++
  Date:      $Date: 2007-08-17 13:10:57 $
  Version:   $Revision: 1.4 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#include "itkOneHiddenLayerBackPropagationNeuralNetwork.h"
#include "itkIterativeSupervisedTrainingFunction.h"
#include "itkBatchSupervisedTrainingFunction.h"
#include "itkVector.h"
#include "itkListSample.h"
#include <vector>
#include <fstream>

#define ROUND(x) (floor(x+0.5))

int
XORTest2(int argc, char* argv[])
{
  if (argc < 1)
    {
    std::cout << "ERROR: data file name argument missing." << std::endl ;
    return EXIT_FAILURE;
    }

  char* dataFileName = argv[1] ;
  const int num_input_nodes = 2;
  const int num_hidden_nodes = 2;
  const int num_output_nodes = 1;

  typedef itk::Vector<double, num_input_nodes> MeasurementVectorType;
  typedef itk::Vector<double, num_output_nodes> TargetVectorType;
  typedef itk::Statistics::ListSample<MeasurementVectorType> SampleType;
  typedef itk::Statistics::ListSample<TargetVectorType> TargetType;

  typedef itk::Statistics::IterativeSupervisedTrainingFunction<SampleType, TargetType, double> TrainingFcnType;

  MeasurementVectorType mv;
  TargetVectorType tv;
  SampleType::Pointer sample = SampleType::New();
  TargetType::Pointer targets = TargetType::New();
  sample->SetMeasurementVectorSize( num_input_nodes);
  targets->SetMeasurementVectorSize( num_output_nodes);
 
  std::ifstream infile1;
  infile1.open(dataFileName, std::ios::in);

  infile1 >> mv[0] >> mv[1] >> tv[0];

  while (!infile1.eof())
    {
    std::cout << "Input =" << mv << std::endl;
    std::cout << "target =" << tv << std::endl;
    sample->PushBack(mv);
    targets->PushBack(tv);
    infile1 >> mv[0] >> mv[1] >> tv[0];    
    }
  infile1.close();

  std::cout << sample->Size() << std::endl;

  typedef itk::Statistics::OneHiddenLayerBackPropagationNeuralNetwork<MeasurementVectorType, TargetVectorType> OneHiddenLayerBackPropagationNeuralNetworkType;
  OneHiddenLayerBackPropagationNeuralNetworkType::Pointer net1 = OneHiddenLayerBackPropagationNeuralNetworkType::New();
  net1->SetNumOfInputNodes(num_input_nodes);
  net1->SetNumOfFirstHiddenNodes(num_hidden_nodes);
  net1->SetNumOfOutputNodes(num_output_nodes);

  net1->Initialize();
  net1->InitializeWeights();
  net1->SetLearningRate(0.01);

  TrainingFcnType::Pointer trainingfcn = TrainingFcnType::New();
  trainingfcn->SetIterations(20000);
  
  trainingfcn->SetThreshold(0.001); 
  trainingfcn->Train(net1, sample, targets);

  //Network Simulation
  std::cout << sample->Size() << std::endl;
  std::cout << "Network Simulation" << std::endl;
  TargetVectorType ov;
  SampleType::ConstIterator iter1 = sample->Begin();
  TargetType::ConstIterator iter2 = targets->Begin();
  unsigned int error1 = 0 ;
  unsigned int error2 = 0 ;
  int flag;
  std::ofstream outfile;
  outfile.open("out1.txt",std::ios::out);
  while (iter1 != sample->End())
    {
    mv = iter1.GetMeasurementVector();
    tv = iter2.GetMeasurementVector();
    ov.Set_vnl_vector(net1->GenerateOutput(mv));
    flag = 0;
    if (fabs(tv[0]-ov[0])>0.2)
      {
      flag = 1;
      }
    if (flag == 1 && ROUND(tv[0]) == 1)
      {
      ++error1;
      }
    else if (flag == 1 && ROUND(tv[0]) == -1)
      {
      ++error2;
      }
    outfile<<mv[0]<<" "<<mv[1]<<" "<<tv[0]<<" "<<ov[0]<<std::endl;
    std::cout << "Network Input = " << mv << std::endl;
    std::cout << "Network Output = " << ov << std::endl;
    std::cout << "Target = " << tv << std::endl;
    ++iter1;
    ++iter2;
    }

  std::cout << "Among 4 measurement vectors, " << error1 + error2
            << " vectors are misclassified." << std::endl ;
  std::cout<<"Network Weights and Biases after Training= "<<std::endl;
  std::cout << net1 << std::endl;
  if ((error1 + error2) > 2)
    {
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}