File: itkKdTreeBasedKmeansEstimatorTest.cxx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (178 lines) | stat: -rwxr-xr-x 5,357 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkKdTreeBasedKmeansEstimatorTest.cxx,v $
  Language:  C++
  Date:      $Date: 2005-02-08 03:18:41 $
  Version:   $Revision: 1.10 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkWin32Header.h"

#include <fstream>

#include "itkFixedArray.h"
#include "itkPoint.h"
#include "itkImage.h"
#include "itkImageRegionIteratorWithIndex.h"

#include "vnl/vnl_matrix.h"

#include "itkPointSetToListAdaptor.h"
#include "itkSubsample.h"
#include "itkKdTree.h"
#include "itkEuclideanDistance.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
#include "itkKdTreeBasedKmeansEstimator.h"

int itkKdTreeBasedKmeansEstimatorTest(int argc, char* argv[] )
{
  namespace stat = itk::Statistics ;
 
  if (argc < 2)
    {
      std::cout << "ERROR: data file name argument missing." 
                << std::endl ;
      return EXIT_FAILURE;
    }

  unsigned int i, j ;
  char* dataFileName = argv[1] ;
  int dataSize = 2000 ;
  int bucketSize = 10 ;
  typedef itk::FixedArray< double, 2 > MeanType ;
  double minStandardDeviation =28.54746 ;

  itk::Array< double > trueMeans(4) ;
  trueMeans[0] = 99.261 ;
  trueMeans[1] = 100.078 ;
  trueMeans[2] = 200.1 ;
  trueMeans[3] = 201.3 ;

  itk::Array< double > initialMeans(4) ;
  initialMeans[0] = 80.0 ;
  initialMeans[1] = 80.0 ;
  initialMeans[2] = 180.0 ;
  initialMeans[3] = 180.0 ;
  int maximumIteration = 200 ;

  /* Loading point data */
  typedef itk::PointSet< double, 2 > PointSetType ;
  PointSetType::Pointer pointSet = PointSetType::New() ;
  PointSetType::PointsContainerPointer pointsContainer = 
    PointSetType::PointsContainer::New() ;
  pointsContainer->Reserve(dataSize) ;
  pointSet->SetPoints(pointsContainer.GetPointer()) ;

  PointSetType::PointsContainerIterator p_iter = pointsContainer->Begin() ;
  PointSetType::PointType point ;
  double temp ;
  std::ifstream dataStream(dataFileName) ;
  while (p_iter != pointsContainer->End())
    {
      for ( i = 0 ; i < PointSetType::PointDimension ; i++)
        {
          dataStream >> temp ;
          point[i] = temp ;
        }
      p_iter.Value() = point ;
      ++p_iter ;
    }

  dataStream.close() ;
  
  /* Importing the point set to the sample */
  typedef stat::PointSetToListAdaptor< PointSetType >
    DataSampleType;

  DataSampleType::Pointer sample =
    DataSampleType::New() ;
  
  sample->SetPointSet(pointSet);

  /* Creating k-d tree */
  typedef stat::WeightedCentroidKdTreeGenerator< DataSampleType > Generator ;
  Generator::Pointer generator = Generator::New() ;
  
  generator->SetSample(sample.GetPointer()) ;
  generator->SetBucketSize(bucketSize) ;
  generator->GenerateData() ;

  /* Searching kmeans */
  typedef stat::KdTreeBasedKmeansEstimator< Generator::KdTreeType > Estimator ;
  Estimator::Pointer estimator = Estimator::New() ;

  estimator->SetParameters(initialMeans) ;
  estimator->SetMaximumIteration(maximumIteration) ;
  estimator->SetKdTree(generator->GetOutput()) ;
  estimator->SetCentroidPositionChangesThreshold(0.0) ;
  estimator->StartOptimization() ;
  Estimator::ParametersType estimatedMeans = estimator->GetParameters() ;

  bool passed = true ;
  int index ;
  unsigned int numberOfMeasurements = DataSampleType::MeasurementVectorSize ;
  unsigned int numberOfClasses = trueMeans.size() / numberOfMeasurements ;
  for (i = 0 ; i < numberOfClasses ; i++)
    {
      std::cout << "cluster[" << i << "] " << std::endl ;
      double displacement = 0.0 ;
      std::cout << "    true mean :" << std::endl ;
      std::cout << "        " ;
      index = numberOfMeasurements * i ;
      for (j = 0 ; j < numberOfMeasurements ; j++)
        {
          std::cout << trueMeans[index] << " " ;
          ++index ;
        }
      std::cout << std::endl ;
      std::cout << "    estimated mean :" << std::endl ;
      std::cout << "        "  ;

      index = numberOfMeasurements * i ;
      for (j = 0 ; j < numberOfMeasurements ; j++)
        {
          std::cout << estimatedMeans[index] << " " ;
          temp = estimatedMeans[index] - trueMeans[index] ;
          ++index ;
          displacement += (temp * temp) ;
        }
      std::cout << std::endl ;
      displacement = sqrt(displacement) ;
      std::cout << "    Mean displacement: " << std::endl ;
      std::cout << "        " << displacement 
                << std::endl << std::endl ;
      // if the displacement of the estimates are within 3 % of
      // standardDeviation then we assume it is successful
      if ( displacement > (minStandardDeviation / 100.0) * 3 )
        {
          passed = false ;
        }
    }
  
  if( !passed )
    {
      std::cout << "Test failed." << std::endl;
      return EXIT_FAILURE;
    }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}