1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkSampleClassifierTest.cxx,v $
Language: C++
Date: $Date: 2005-07-26 15:55:14 $
Version: $Revision: 1.9 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkWin32Header.h"
#include <fstream>
#include "itkVector.h"
#include "itkPoint.h"
#include "itkImage.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "vnl/vnl_matrix.h"
#include "itkPointSetToListAdaptor.h"
#include "itkSubsample.h"
#include "itkEuclideanDistance.h"
#include "itkMinimumDecisionRule.h"
#include "itkSampleClassifier.h"
int itkSampleClassifierTest(int argc, char* argv[] )
{
namespace stat = itk::Statistics ;
if (argc < 2)
{
std::cout << "ERROR: data file name argument missing."
<< std::endl ;
return EXIT_FAILURE;
}
unsigned int i, j ;
char* dataFileName = argv[1] ;
int dataSize = 2000 ;
unsigned int numberOfClasses = 2 ;
/* Loading point data */
typedef itk::PointSet< double, 2 > PointSetType ;
PointSetType::Pointer pointSet = PointSetType::New() ;
PointSetType::PointsContainerPointer pointsContainer =
PointSetType::PointsContainer::New() ;
pointsContainer->Reserve(dataSize) ;
pointSet->SetPoints(pointsContainer.GetPointer()) ;
PointSetType::PointsContainerIterator p_iter = pointsContainer->Begin() ;
PointSetType::PointType point ;
double temp ;
std::ifstream dataStream(dataFileName) ;
while (p_iter != pointsContainer->End())
{
for ( i = 0 ; i < PointSetType::PointDimension ; i++)
{
dataStream >> temp ;
point[i] = temp ;
}
p_iter.Value() = point ;
++p_iter ;
}
dataStream.close() ;
/* Importing the point set to the sample */
typedef stat::PointSetToListAdaptor< PointSetType >
DataSampleType;
DataSampleType::Pointer sample =
DataSampleType::New() ;
sample->SetPointSet(pointSet);
/** preparing classifier and decision rule object */
typedef itk::Statistics::SampleClassifier< DataSampleType > ClassifierType ;
typedef itk::MinimumDecisionRule DecisionRuleType ;
typedef itk::Statistics::EuclideanDistance< DataSampleType::MeasurementVectorType >
MembershipFunctionType ;
typedef MembershipFunctionType::OriginType MeanType;
std::vector< MeanType > trueMeans ;
MeanType m1( 2 );
m1[0] = 99.261;
m1[1] = 100.078;
MeanType m2( 2 );
m2[0]=200.1;
m2[1]=201.3;
trueMeans.push_back( m1 );
trueMeans.push_back( m2 );
ClassifierType::Pointer classifier = ClassifierType::New() ;
DecisionRuleType::Pointer decisionRule = DecisionRuleType::New() ;
classifier->SetDecisionRule(decisionRule) ;
classifier->SetNumberOfClasses(numberOfClasses) ;
classifier->SetSample(sample.GetPointer()) ;
std::vector< MembershipFunctionType::Pointer > membershipFunctions ;
std::vector< unsigned int > classLabels ;
for ( i = 0 ; i < numberOfClasses ; i++ )
{
membershipFunctions.push_back(MembershipFunctionType::New()) ;
classLabels.push_back(i + 1) ;
for ( j = 0 ; j < DataSampleType::MeasurementVectorSize ; j++ )
{
membershipFunctions[i]->SetOrigin(trueMeans[i]) ;
}
classifier->AddMembershipFunction(membershipFunctions[i].GetPointer()) ;
}
classifier->SetMembershipFunctionClassLabels(classLabels) ;
/* start classification process */
classifier->Update() ;
/* evaluate the classification result */
ClassifierType::OutputType* membershipSample =
classifier->GetOutput() ;
ClassifierType::OutputType::ConstIterator m_iter =
membershipSample->Begin() ;
ClassifierType::OutputType::ConstIterator m_last =
membershipSample->End() ;
unsigned int index = 0 ;
unsigned int error1 = 0 ;
unsigned int error2 = 0 ;
while ( m_iter != m_last )
{
if ( index < 1000 )
{
if ( m_iter.GetClassLabel() != classLabels[0] )
{
++error1 ;
}
}
else
{
if ( m_iter.GetClassLabel() != classLabels[1] )
{
++error2 ;
}
}
++index ;
++m_iter ;
}
std::cout << "Among 2000 measurement vectors, " << error1 + error2
<< " vectors are misclassified." << std::endl ;
if( double(error1 / 10) > 2 || double(error2 / 10) > 2)
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
// following three lines to increase test coverage of the
// DecisionRuleBase
std::cout << "Decision rule base class = "
<< decisionRule->DecisionRuleType::Superclass::GetNameOfClass()
<< std::endl ;
return EXIT_SUCCESS;
}
|