1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkSampleMeanShiftClusteringFilterTest.cxx,v $
Language: C++
Date: $Date: 2005-02-08 03:18:41 $
Version: $Revision: 1.5 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkImageFileReader.h"
#include "itkImageRegionIterator.h"
#include "itkScalarImageToListAdaptor.h"
#include "itkKdTree.h"
#include "itkKdTreeGenerator.h"
#include "itkMeanShiftModeCacheMethod.h"
#include "itkHypersphereKernelMeanShiftModeSeeker.h"
#include "itkSampleMeanShiftBlurringFilter.h"
#include "itkSampleMeanShiftClusteringFilter.h"
#include "itkImageFileWriter.h"
int itkSampleMeanShiftClusteringFilterTest(int argc, char* argv[] )
{
std::cout << "SampleMeanShiftClusteringFilter Test \n \n";
if (argc < 2)
{
std::cout << "ERROR: data file name argument missing."
<< std::endl ;
return EXIT_FAILURE;
}
bool saveClusteredImage = false ;
typedef unsigned char PixelType ;
typedef itk::Image< PixelType, 2 > ImageType ;
typedef itk::ImageFileReader< ImageType > ImageReaderType ;
ImageReaderType::Pointer imageReader = ImageReaderType::New() ;
imageReader->SetFileName( argv[1] ) ;
imageReader->Update() ;
ImageType::Pointer image = imageReader->GetOutput() ;
typedef itk::Statistics::ScalarImageToListAdaptor< ImageType >
ListSampleType ;
ListSampleType::Pointer listSample =
ListSampleType::New() ;
listSample->SetImage( image ) ;
typedef itk::Statistics::KdTreeGenerator< ListSampleType >
TreeGeneratorType ;
TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New() ;
treeGenerator->SetSample( listSample ) ;
treeGenerator->SetBucketSize( 200 ) ;
treeGenerator->Update() ;
typedef TreeGeneratorType::KdTreeType TreeType ;
TreeType::Pointer tree = treeGenerator->GetOutput() ;
typedef itk::Statistics::HypersphereKernelMeanShiftModeSeeker<
TreeType > ModeSeekerType ;
ModeSeekerType::Pointer modeSeeker = ModeSeekerType::New() ;
modeSeeker->SetInputSample( tree ) ;
// modeSeeker->SetInputSample( listSample ) ;
modeSeeker->SetSearchRadius( 4.0 ) ;
typedef itk::Statistics::MeanShiftModeCacheMethod< TreeType::MeasurementVectorType > CacheMethodType ;
CacheMethodType::Pointer cacheMethod = CacheMethodType::New() ;
cacheMethod->SetMaximumEntries(255) ;
cacheMethod->SetMaximumConsecutiveFailures(100) ;
cacheMethod->SetHitRatioThreshold( 0.5 ) ;
modeSeeker->SetCacheMethod( cacheMethod.GetPointer() ) ;
typedef itk::Statistics::SampleMeanShiftBlurringFilter< TreeType >
FilterType ;
FilterType::Pointer filter = FilterType::New() ;
filter->SetInputSample( tree ) ;
filter->SetMeanShiftModeSeeker( modeSeeker ) ;
try
{
filter->Update() ;
}
catch ( ... )
{
std::cout << "Test failed. - blurring proces" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Cache statistics: " << std::endl ;
cacheMethod->Print(std::cout) ;
typedef ImageType OutputImageType ;
OutputImageType::Pointer outputImage = OutputImageType::New() ;
outputImage->SetRegions( image->GetLargestPossibleRegion() ) ;
outputImage->Allocate() ;
typedef itk::ImageRegionIterator< OutputImageType > ImageIteratorType ;
ImageIteratorType io_iter( outputImage,
outputImage->GetLargestPossibleRegion() ) ;
io_iter.GoToBegin() ;
FilterType::OutputType::Pointer output = filter->GetOutput() ;
FilterType::OutputType::Iterator fo_iter = output->Begin() ;
FilterType::OutputType::Iterator fo_end = output->End() ;
while ( fo_iter != fo_end )
{
io_iter.Set( (PixelType) fo_iter.GetMeasurementVector()[0]) ;
++fo_iter ;
++io_iter ;
}
ListSampleType::Pointer listSample2 = ListSampleType::New() ;
listSample2->SetImage( outputImage ) ;
TreeGeneratorType::Pointer treeGenerator2 = TreeGeneratorType::New() ;
treeGenerator2->SetSample( listSample2 ) ;
treeGenerator2->SetBucketSize( 200 ) ;
treeGenerator2->Update() ;
typedef itk::Statistics::SampleMeanShiftClusteringFilter< TreeType >
ClusteringMethodType ;
ClusteringMethodType::Pointer clusteringMethod =
ClusteringMethodType::New() ;
clusteringMethod->SetInputSample( treeGenerator2->GetOutput() ) ;
clusteringMethod->SetThreshold( 0.5 ) ;
clusteringMethod->SetMinimumClusterSize( 16 ) ;
clusteringMethod->DebugOn() ;
try
{
clusteringMethod->Update() ;
}
catch ( ... )
{
std::cout << "Test failed. - clustering proces" << std::endl;
return EXIT_FAILURE;
}
if ( saveClusteredImage )
{
OutputImageType::Pointer clusterMap = OutputImageType::New() ;
clusterMap->SetRegions( image->GetLargestPossibleRegion() ) ;
clusterMap->Allocate() ;
ImageIteratorType m_iter( clusterMap,
clusterMap->GetLargestPossibleRegion() ) ;
m_iter.GoToBegin() ;
ClusteringMethodType::ClusterLabelsType clusterLabels =
clusteringMethod->GetOutput() ;
ClusteringMethodType::ClusterLabelsType::iterator co_iter =
clusterLabels.begin() ;
while ( co_iter != clusterLabels.end() )
{
m_iter.Set( (PixelType) *co_iter ) ;
++co_iter ;
++m_iter ;
}
typedef itk::ImageFileWriter< OutputImageType > ImageWriterType ;
ImageWriterType::Pointer map_writer = ImageWriterType::New() ;
map_writer->SetFileName("clustered_sf4.png") ;
map_writer->SetInput( clusterMap ) ;
map_writer->Update() ;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|