File: itkScalarImageTextureCalculatorTest.cxx

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (146 lines) | stat: -rwxr-xr-x 4,477 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*=========================================================================

Program:   Insight Segmentation & Registration Toolkit
Module:    $RCSfile: itkScalarImageTextureCalculatorTest.cxx,v $
Language:  C++
Date:      $Date: 2004-08-02 06:59:23 $
Version:   $Revision: 1.6 $

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even 
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
// Insight classes
#include "itkImage.h"
#include "itkImageRegionIterator.h"
#include "vnl/vnl_math.h"

#include "itkScalarImageTextureCalculator.h"

// Un-comment to run this test standalone:
//int itkScalarImageTextureCalculatorTest(int, char* [] );
//int main(int c, char * v[])
//  {
//  return itkScalarImageTextureCalculatorTest(c, v);
//  }

int itkScalarImageTextureCalculatorTest(int, char* [] )
{

  //Data definitions 
  const unsigned int  IMGWIDTH         =  5;
  const unsigned int  IMGHEIGHT        =  5;
  const unsigned int  NDIMENSION       =  2;


  //------------------------------------------------------
  //Create a simple test images
  //------------------------------------------------------
  typedef itk::Image<unsigned char, NDIMENSION> InputImageType;

  typedef itk::ImageRegionIterator< InputImageType > InputImageIterator;

   
  InputImageType::Pointer image = InputImageType::New();
  
  InputImageType::SizeType inputImageSize = {{ IMGWIDTH, IMGHEIGHT }};

  InputImageType::IndexType index;
  index.Fill(0);
  InputImageType::RegionType region;

  region.SetSize( inputImageSize );
  region.SetIndex( index );

  //--------------------------------------------------------------------------
  // Set up the image first. It looks like:
  //  1 2 1 2 1
  //  1 2 1 2 1
  //  1 2 1 2 1
  //  1 2 1 2 1
  //  1 2 1 2 1
  //--------------------------------------------------------------------------

  image->SetRegions( region );
  image->Allocate();

  // setup the iterator
  InputImageIterator imageIt( image, image->GetBufferedRegion() );

  for(int i = 0; i < 5; i++)
    for(int j = 0; j < 5; j++, ++imageIt)
      {
      imageIt.Set(j % 2 + 1);
      }

  
  //--------------------------------------------------------------------------
  // Test the calculator
  //--------------------------------------------------------------------------
  
  try {
  
  typedef itk::Statistics::ScalarImageTextureCalculator< 
    InputImageType> TextureCalcType;
  
  // First test: just use the defaults.
  TextureCalcType::Pointer texCalc = TextureCalcType::New();
  texCalc->SetInput(image);
  texCalc->Compute();
  TextureCalcType::FeatureValueVectorPointer means, stds;
  means = texCalc->GetFeatureMeans();
  stds = texCalc->GetFeatureStandardDeviations();
  
  double expectedMeans[6] = {0.505, 0.992738, 0.625, 0.75, 0.0959999, 0.2688};
  double expectedDeviations[6] = {0.00866027, 0.0125788, 0.216506351, 0.433012702, 
    0.166277, 0.465575};
  
  bool passed = true;
  TextureCalcType::FeatureValueVector::ConstIterator mIt, sIt;
  int counter;
  for (counter = 0, mIt = means->Begin(); mIt != means->End(); ++mIt, counter++)
    {
    if ( vnl_math_abs(expectedMeans[counter] - mIt.Value()) > 0.0001 ) 
      {
      std::cout << "Error. Mean for feature " << counter << " is " << mIt.Value() <<
      ", expected " << expectedMeans[counter] << "." << std::endl;
      passed = false;
      }
    }

  for (counter = 0, sIt = stds->Begin(); sIt != stds->End(); ++sIt, counter ++)
    {
    if ( vnl_math_abs(expectedDeviations[counter] - sIt.Value()) > 0.0001 )
      {
      std::cout << "Error. Deiviation for feature " << counter << " is " << sIt.Value() <<
      ", expected " << expectedDeviations[counter] << "." << std::endl;
      passed = false;
      }
    }
  
  if (!passed)
    {
    std::cerr << "Test failed" << std::endl;
    return EXIT_FAILURE;
    }
  else
    {
    std::cerr << "Test succeeded" << std::endl;
    return EXIT_SUCCESS;
    }
  
  } catch( itk::ExceptionObject & err ) { 
    std::cerr << "ExceptionObject caught !" << std::endl; 
    std::cerr << err << std::endl; 
    std::cerr << "Test failed" << std::endl;
    return EXIT_FAILURE;
  }
}