1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkAmoebaOptimizerTest.cxx,v $
Language: C++
Date: $Date: 2008-01-16 19:08:02 $
Version: $Revision: 1.21 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include <itkAmoebaOptimizer.h>
#include <vnl/vnl_vector_fixed.h>
#include <vnl/vnl_vector.h>
#include <vnl/vnl_matrix.h>
#include <vnl/vnl_math.h>
#include <iostream>
/**
* The objectif function is the quadratic form:
*
* 1/2 x^T A x - b^T x
*
* Where A is represented as an itkMatrix and
* b is represented as a itkVector
*
* The system in this example is:
*
* | 3 2 ||x| | 2| |0|
* | 2 6 ||y| + |-8| = |0|
*
*
* the solution is the vector | 2 -2 |
*
* and the expected final value of the function is 10.0
*
*/
class amoebaCostFunction : public itk::SingleValuedCostFunction
{
public:
typedef amoebaCostFunction Self;
typedef itk::SingleValuedCostFunction Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
itkNewMacro( Self );
itkTypeMacro( amoebaCostFunction, SingleValuedCostFunction );
enum { SpaceDimension=2 };
typedef Superclass::ParametersType ParametersType;
typedef Superclass::DerivativeType DerivativeType;
typedef Superclass::MeasureType MeasureType;
typedef vnl_vector<double> VectorType;
typedef vnl_matrix<double> MatrixType;
amoebaCostFunction():m_A(SpaceDimension,SpaceDimension),m_b(SpaceDimension)
{
m_A[0][0] = 3;
m_A[0][1] = 2;
m_A[1][0] = 2;
m_A[1][1] = 6;
m_b[0] = 2;
m_b[1] = -8;
m_Negate = false;
}
double GetValue( const ParametersType & parameters ) const
{
VectorType v( parameters.Size() );
for(unsigned int i=0; i<SpaceDimension; i++)
{
v[i] = parameters[i];
}
VectorType Av = m_A * v;
double val = ( inner_product<double>( Av , v ) )/2.0;
val -= inner_product< double >( m_b , v );
if( m_Negate )
{
val *= -1.0;
}
return val;
}
void GetDerivative( const ParametersType & parameters,
DerivativeType & derivative ) const
{
VectorType v( parameters.Size() );
for(unsigned int i=0; i<SpaceDimension; i++)
{
v[i] = parameters[i];
}
std::cout << "GetDerivative( " << v << " ) = ";
VectorType gradient = m_A * v - m_b;
std::cout << gradient << std::endl;
derivative = DerivativeType(SpaceDimension);
for(unsigned int i=0; i<SpaceDimension; i++)
{
if( !m_Negate )
{
derivative[i] = gradient[i];
}
else
{
derivative[i] = -gradient[i];
}
}
}
unsigned int GetNumberOfParameters(void) const
{
return SpaceDimension;
}
// Used to switch between maximization and minimization.
void SetNegate(bool flag )
{
m_Negate = flag;
}
private:
MatrixType m_A;
VectorType m_b;
bool m_Negate;
};
class CommandIterationUpdateAmoeba : public itk::Command
{
public:
typedef CommandIterationUpdateAmoeba Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdateAmoeba()
{
m_IterationNumber=0;
}
public:
typedef itk::AmoebaOptimizer OptimizerType;
typedef const OptimizerType * OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event)
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event)
{
OptimizerPointer optimizer =
dynamic_cast< OptimizerPointer >( object );
if( m_FunctionEvent.CheckEvent( &event ) )
{
std::cout << m_IterationNumber++ << " ";
std::cout << optimizer->GetCachedValue() << " ";
std::cout << optimizer->GetCachedCurrentPosition() << std::endl;
}
else if( m_GradientEvent.CheckEvent( &event ) )
{
std::cout << "Gradient " << optimizer->GetCachedDerivative() << " ";
}
}
private:
unsigned long m_IterationNumber;
itk::FunctionEvaluationIterationEvent m_FunctionEvent;
itk::GradientEvaluationIterationEvent m_GradientEvent;
};
int itkAmoebaOptimizerTest(int, char* [] )
{
std::cout << "Amoeba Optimizer Test \n \n";
typedef itk::AmoebaOptimizer OptimizerType;
typedef OptimizerType::InternalOptimizerType vnlOptimizerType;
// Declaration of a itkOptimizer
OptimizerType::Pointer itkOptimizer = OptimizerType::New();
// set optimizer parameters
itkOptimizer->SetMaximumNumberOfIterations( 10 );
double xTolerance = 0.01;
itkOptimizer->SetParametersConvergenceTolerance( xTolerance );
double fTolerance = 0.001;
itkOptimizer->SetFunctionConvergenceTolerance( fTolerance );
// Declaration of the CostFunction adaptor
amoebaCostFunction::Pointer costFunction = amoebaCostFunction::New();
itkOptimizer->SetCostFunction( costFunction.GetPointer() );
vnlOptimizerType * vnlOptimizer = itkOptimizer->GetOptimizer();
OptimizerType::ParametersType initialValue(2); // constructor requires vector size
initialValue[0] = 100; // We start not far from | 2 -2 |
initialValue[1] = -100;
OptimizerType::ParametersType currentValue(2);
currentValue = initialValue;
itkOptimizer->SetInitialPosition( currentValue );
try
{
vnlOptimizer->verbose = true;
std::cout << "Run for " << itkOptimizer->GetMaximumNumberOfIterations();
std::cout << " iterations." << std::endl;
itkOptimizer->StartOptimization();
std::cout << "Continue for " << itkOptimizer->GetMaximumNumberOfIterations();
std::cout << " iterations." << std::endl;
itkOptimizer->SetMaximumNumberOfIterations( 100 );
itkOptimizer->SetInitialPosition( itkOptimizer->GetCurrentPosition() );
itkOptimizer->StartOptimization();
}
catch( itk::ExceptionObject & e )
{
std::cout << "Exception thrown ! " << std::endl;
std::cout << "An error ocurred during Optimization" << std::endl;
std::cout << "Location = " << e.GetLocation() << std::endl;
std::cout << "Description = " << e.GetDescription() << std::endl;
return EXIT_FAILURE;
}
std::cout << "Number of evals = " << vnlOptimizer->get_num_evaluations() << std::endl;
std::cout << "Optimizer: " << itkOptimizer;
//
// check results to see if it is within range
//
OptimizerType::ParametersType finalPosition;
finalPosition = itkOptimizer->GetCurrentPosition();
double trueParameters[2] = { 2, -2 };
bool pass = true;
std::cout << "Right answer = " << trueParameters[0] << " , " << trueParameters[1] << std::endl;
std::cout << "Final position = " << finalPosition << std::endl;
for( unsigned int j = 0; j < 2; j++ )
{
if( vnl_math_abs( finalPosition[j] - trueParameters[j] ) > xTolerance )
pass = false;
}
if( !pass )
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
// Get the final value of the optimizer
std::cout << "Testing GetValue() : ";
OptimizerType::MeasureType finalValue = itkOptimizer->GetValue();
if(fabs(finalValue+9.99998)>0.01)
{
std::cout << "[FAILURE]" << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "[SUCCESS]" << std::endl;
}
// Set now the function to maximize
//
{ // add a block-scope to have local variables
std::cout << "Testing Maximization " << std::endl;
currentValue = initialValue;
itkOptimizer->SetInitialPosition( currentValue );
CommandIterationUpdateAmoeba::Pointer observer =
CommandIterationUpdateAmoeba::New();
itkOptimizer->AddObserver( itk::IterationEvent(), observer );
itkOptimizer->AddObserver( itk::FunctionEvaluationIterationEvent(), observer );
try
{
// These two following statement should compensate each other
// and allow us to get to the same result as the test above.
costFunction->SetNegate(true);
itkOptimizer->MaximizeOn();
vnlOptimizer->verbose = true;
std::cout << "Run for " << itkOptimizer->GetMaximumNumberOfIterations();
std::cout << " iterations." << std::endl;
itkOptimizer->StartOptimization();
std::cout << "Continue for " << itkOptimizer->GetMaximumNumberOfIterations();
std::cout << " iterations." << std::endl;
itkOptimizer->SetMaximumNumberOfIterations( 100 );
itkOptimizer->SetInitialPosition( itkOptimizer->GetCurrentPosition() );
itkOptimizer->StartOptimization();
}
catch( itk::ExceptionObject & e )
{
std::cout << "Exception thrown ! " << std::endl;
std::cout << "An error ocurred during Optimization" << std::endl;
std::cout << "Location = " << e.GetLocation() << std::endl;
std::cout << "Description = " << e.GetDescription() << std::endl;
return EXIT_FAILURE;
}
finalPosition = itkOptimizer->GetCurrentPosition();
std::cout << "Right answer = " << trueParameters[0] << " , " << trueParameters[1] << std::endl;
std::cout << "Final position = " << finalPosition << std::endl;
for( unsigned int j = 0; j < 2; j++ )
{
if( vnl_math_abs( finalPosition[j] - trueParameters[j] ) > xTolerance )
pass = false;
}
if( !pass )
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
// Get the final value of the optimizer
std::cout << "Testing GetValue() : ";
finalValue = itkOptimizer->GetValue();
if(fabs(finalValue+9.99998)>0.01)
{
std::cout << "[FAILURE]" << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "[SUCCESS]" << std::endl;
}
}
std::cout << "Test done." << std::endl;
return EXIT_SUCCESS;
}
|