1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkLBFGSBOptimizerTest.cxx,v $
Language: C++
Date: $Date: 2005-02-08 03:18:41 $
Version: $Revision: 1.3 $
Copyright (c) 2002 Insight Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkLBFGSBOptimizer.h"
#include "itkTextOutput.h"
#include <vnl/vnl_math.h>
#include <iostream>
/**
* The objective function is the quadratic form:
*
* f(x) = 1/2 x^T A x - b^T x subject to -1 <= x <= 10
*
* Where A is represented as an itkMatrix and
* b is represented as a itkVector
*
* The system in this example is:
*
* | 3 2 | | 2|
* A= | 2 6 | b = |-8|
*
* the solution is the vector | 4/3 -1 |
*
*/
class LBFCostFunction : public itk::SingleValuedCostFunction
{
public:
typedef LBFCostFunction Self;
typedef itk::SingleValuedCostFunction Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
itkNewMacro( Self );
itkTypeMacro( LBFCostFunction, SingleValuedCostFunction );
enum { SpaceDimension=2 };
typedef Superclass::ParametersType ParametersType;
typedef Superclass::DerivativeType DerivativeType;
typedef vnl_vector<double> VectorType;
typedef vnl_matrix<double> MatrixType;
typedef double MeasureType ;
LBFCostFunction()
{
}
double GetValue( const ParametersType & position ) const
{
double x = position[0];
double y = position[1];
std::cout << "GetValue ( " ;
std::cout << x << " , " << y;
std::cout << ") = ";
double val = 0.5*(3*x*x+4*x*y+6*y*y) - 2*x + 8*y;
std::cout << val << std::endl;
return val;
}
void GetDerivative( const ParametersType & position,
DerivativeType & derivative ) const
{
double x = position[0];
double y = position[1];
std::cout << "GetDerivative ( " ;
std::cout << x << " , " << y;
std::cout << ") = ";
derivative = DerivativeType(SpaceDimension);
derivative[0] = 3*x + 2*y -2;
derivative[1] = 2*x + 6*y +8;
std::cout << "(" ;
std::cout << derivative[0] <<" , ";
std::cout << derivative[1] << ")" << std::endl;
}
unsigned int GetNumberOfParameters(void) const
{
return SpaceDimension;
}
private:
};
int itkLBFGSBOptimizerTest(int, char *[])
{
itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());
std::cout << "LBFGSB Optimizer Test \n \n";
typedef itk::LBFGSBOptimizer OptimizerType;
// Declaration of a itkOptimizer
OptimizerType::Pointer itkOptimizer = OptimizerType::New();
itkOptimizer->Print( std::cout );
// Declaration of the CostFunction adaptor
LBFCostFunction::Pointer costFunction = LBFCostFunction::New();
itkOptimizer->SetCostFunction( costFunction.GetPointer() );
const double F_Convergence_Factor = 1e+7; // Function value tolerance
const double Projected_G_Tolerance = 1e-5; // Proj gradient tolerance
const int Max_Iterations = 100; // Maximum number of iterations
itkOptimizer->SetCostFunctionConvergenceFactor( F_Convergence_Factor );
itkOptimizer->SetProjectedGradientTolerance( Projected_G_Tolerance );
itkOptimizer->SetMaximumNumberOfIterations( Max_Iterations );
itkOptimizer->SetMaximumNumberOfEvaluations( Max_Iterations );
const unsigned int SpaceDimension = 2;
OptimizerType::ParametersType initialValue(SpaceDimension);
// Starting point
initialValue[0] = 10;
initialValue[1] = 10;
OptimizerType::ParametersType currentValue(2);
currentValue = initialValue;
itkOptimizer->SetInitialPosition( currentValue );
// Set up boundary conditions
OptimizerType::BoundValueType lower(SpaceDimension);
OptimizerType::BoundValueType upper(SpaceDimension);
OptimizerType::BoundSelectionType select(SpaceDimension);
lower.Fill( -1 );
upper.Fill( 10 );
select.Fill( 2 );
itkOptimizer->SetLowerBound( lower );
itkOptimizer->SetUpperBound( upper );
itkOptimizer->SetBoundSelection( select );
itkOptimizer->Print( std::cout );
try
{
itkOptimizer->StartOptimization();
}
catch( itk::ExceptionObject & e )
{
std::cout << "Exception thrown ! " << std::endl;
std::cout << "An error ocurred during Optimization" << std::endl;
std::cout << "Location = " << e.GetLocation() << std::endl;
std::cout << "Description = " << e.GetDescription() << std::endl;
return EXIT_FAILURE;
}
const OptimizerType::ParametersType & finalPosition = itkOptimizer->GetCurrentPosition();
std::cout << "Solution = (";
std::cout << finalPosition[0] << "," ;
std::cout << finalPosition[1] << ")" << std::endl;
std::cout << "Final Function Value = ";
std::cout << itkOptimizer->GetValue() << std::endl;
std::cout << "Infinity Norm of Projected Gradient = ";
std::cout << itkOptimizer->GetInfinityNormOfProjectedGradient() << std::endl;
//
// check results to see if it is within range
//
bool pass = true;
double trueParameters[2] = { 4.0/3.0, -1.0 };
for( unsigned int j = 0; j < 2; j++ )
{
if( vnl_math_abs( finalPosition[j] - trueParameters[j] ) > 0.01 )
pass = false;
}
if( !pass )
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|