1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkVersorTransformOptimizerTest.cxx,v $
Language: C++
Date: $Date: 2005-02-08 03:18:41 $
Version: $Revision: 1.13 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include <itkVersorTransformOptimizer.h>
#include <itkVector.h>
#include <itkVersor.h>
#include <itkCovariantVector.h>
#include <itkVersorTransform.h>
/**
* The objectif function is the scalar product:
*
* f( V ) = < A, V(B) >
*
* where:
*
* V is a Versor representing a rotation
* A is a vector
* B is another vector
*
* the vector A = [ 0 0 1 ]
* the vector B = [ 0 1 0 ]
*
* the Versor solution should be: V = [ k1 0 0 k2 ]
*
* k1 = sin( 45 degrees )
* k2 = cos( 45 degrees )
*
*/
class versorCostFunction : public itk::SingleValuedCostFunction
{
public:
typedef versorCostFunction Self;
typedef itk::SingleValuedCostFunction Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef itk::VersorTransform<double> TransformType;
itkNewMacro( Self );
itkTypeMacro( versorCostFunction, SingleValuedCostFunction );
enum { SpaceDimension = 3 };
typedef Superclass::ParametersType ParametersType;
typedef Superclass::DerivativeType DerivativeType;
typedef itk::Versor< double > VersorType;
typedef VersorType::VectorType AxisType;
typedef itk::Vector< double, SpaceDimension > VectorType;
typedef double MeasureType;
versorCostFunction()
{
m_Transform = TransformType::New();
}
MeasureType GetValue( const ParametersType & parameters ) const
{
std::cout << "GetValue( " << parameters << " ) = ";
VectorType A;
VectorType B;
A[0] = 0;
A[1] = 0;
A[2] = 1;
B[0] = 0;
B[1] = 1;
B[2] = 0;
VectorType rightPart;
for(unsigned int i=0; i<3; i++)
{
rightPart[i] = parameters[i];
}
VersorType versor;
versor.Set( rightPart );
m_Transform->SetRotation( versor );
const VectorType C = m_Transform->TransformVector( B );
MeasureType measure = A * C;
std::cout << measure << std::endl;
return measure;
}
void GetDerivative( const ParametersType & parameters,
DerivativeType & derivative ) const
{
VectorType rightPart;
for(unsigned int i=0; i<3; i++)
{
rightPart[i] = parameters[i];
}
VersorType currentVersor;
currentVersor.Set( rightPart );
const MeasureType baseValue = this->GetValue( parameters );
VersorType versorX;
VersorType versorY;
VersorType versorZ;
const double deltaAngle = 0.00175; // in radians = about 0.1 degree
versorX.SetRotationAroundX( deltaAngle );
versorY.SetRotationAroundY( deltaAngle );
versorZ.SetRotationAroundZ( deltaAngle );
VersorType plusdDeltaX = currentVersor * versorX;
VersorType plusdDeltaY = currentVersor * versorY;
VersorType plusdDeltaZ = currentVersor * versorZ;
ParametersType parametersPlustDeltaX(SpaceDimension);
ParametersType parametersPlustDeltaY(SpaceDimension);
ParametersType parametersPlustDeltaZ(SpaceDimension);
parametersPlustDeltaX[0] = plusdDeltaX.GetX();
parametersPlustDeltaX[1] = plusdDeltaX.GetY();
parametersPlustDeltaX[2] = plusdDeltaX.GetZ();
parametersPlustDeltaY[0] = plusdDeltaY.GetX();
parametersPlustDeltaY[1] = plusdDeltaY.GetY();
parametersPlustDeltaY[2] = plusdDeltaY.GetZ();
parametersPlustDeltaZ[0] = plusdDeltaZ.GetX();
parametersPlustDeltaZ[1] = plusdDeltaZ.GetY();
parametersPlustDeltaZ[2] = plusdDeltaZ.GetZ();
const MeasureType turnXValue = this->GetValue( parametersPlustDeltaX );
const MeasureType turnYValue = this->GetValue( parametersPlustDeltaY );
const MeasureType turnZValue = this->GetValue( parametersPlustDeltaZ );
derivative = DerivativeType( SpaceDimension );
derivative[0] = ( turnXValue - baseValue ) / deltaAngle;
derivative[1] = ( turnYValue - baseValue ) / deltaAngle;
derivative[2] = ( turnZValue - baseValue ) / deltaAngle;
}
unsigned int GetNumberOfParameters(void) const
{
return SpaceDimension;
}
private:
mutable TransformType::Pointer m_Transform;
};
int itkVersorTransformOptimizerTest(int, char* [] )
{
std::cout << "VersorTransform Optimizer Test ";
std::cout << std::endl << std::endl;
typedef itk::VersorTransformOptimizer OptimizerType;
typedef OptimizerType::ScalesType ScalesType;
// Declaration of a itkOptimizer
OptimizerType::Pointer itkOptimizer = OptimizerType::New();
// Declaration of the CostFunction adaptor
versorCostFunction::Pointer costFunction = versorCostFunction::New();
itkOptimizer->SetCostFunction( costFunction );
typedef versorCostFunction::ParametersType ParametersType;
typedef OptimizerType::VersorType VersorType;
// We start with a null rotation
VersorType::VectorType axis;
axis[0] = 1.0f;
axis[1] = 0.0f;
axis[2] = 0.0f;
VersorType::ValueType angle = 0.0f;
VersorType initialRotation;
initialRotation.Set( axis, angle );
const unsigned int spaceDimensions = costFunction->GetNumberOfParameters();
ParametersType initialPosition( spaceDimensions );
initialPosition[0] = initialRotation.GetX();
initialPosition[1] = initialRotation.GetY();
initialPosition[2] = initialRotation.GetZ();
ScalesType parametersScale( spaceDimensions );
parametersScale[0] = 1.0;
parametersScale[1] = 1.0;
parametersScale[2] = 1.0;
itkOptimizer->MaximizeOn();
itkOptimizer->SetScales( parametersScale );
itkOptimizer->SetGradientMagnitudeTolerance( 1e-15 );
itkOptimizer->SetMaximumStepLength( 0.1745 ); // About 10 deegres
itkOptimizer->SetMinimumStepLength( 1e-9 );
itkOptimizer->SetNumberOfIterations( 10 );
itkOptimizer->SetInitialPosition( initialPosition );
try
{
itkOptimizer->StartOptimization();
}
catch( itk::ExceptionObject & e )
{
std::cout << "Exception thrown ! " << std::endl;
std::cout << "An error ocurred during Optimization" << std::endl;
std::cout << "Location = " << e.GetLocation() << std::endl;
std::cout << "Description = " << e.GetDescription() << std::endl;
return EXIT_FAILURE;
}
ParametersType finalPosition( spaceDimensions );
finalPosition = itkOptimizer->GetCurrentPosition();
VersorType finalRotation;
VersorType::VectorType finalRightPart;
for(unsigned int i=0; i< spaceDimensions; i++)
{
finalRightPart[i] = finalPosition[i];
}
finalRotation.Set( finalRightPart );
std::cout << "Solution = (" << finalRotation << ")" << std::endl;
//
// check results to see if it is within range
//
bool pass = true;
// True versor
VersorType::VectorType trueAxis;
VersorType::ValueType trueAngle;
trueAxis[0] = 1.0f;
trueAxis[1] = 0.0f;
trueAxis[2] = 0.0f;
trueAngle = 2.0 * atan( 1.0f );
VersorType trueRotation;
trueRotation.Set( trueAxis, trueAngle );
ParametersType trueParameters(spaceDimensions);
trueParameters[0] = trueRotation.GetX();
trueParameters[1] = trueRotation.GetY();
trueParameters[2] = trueRotation.GetZ();
std::cout << "True Parameters = " << trueParameters << std::endl;
VersorType ratio = finalRotation * trueRotation.GetReciprocal();
const VersorType::ValueType cosHalfAngle = ratio.GetW();
const VersorType::ValueType cosHalfAngleSquare =
cosHalfAngle * cosHalfAngle;
if( cosHalfAngleSquare < 0.95 )
{
pass = false;
}
if( !pass )
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|