1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
% SLFFEA example "b1" (eight-noded linear brick element) - VALIDATED!
%
% Displacements =>
%
% Node#: 0: -0.086324, -0.00055514, 0.121079
% Node#: 1: 0.0952793, -0.00331153, 0.114235
% Node#: 2: 0.0727445, 0.00768949, -0.0394109
% Node#: 3: -0.0774779, -0.0115562, -0.0325665
% Node#: 4: 4.02896e-12, -4.01728e-12, 0.0713128
% Node#: 5: 8.22274e-12, 2.78523e-12, 0.0734239
% Node#: 6: 0.0439568, 8.17943e-12, 0.00211102
% Node#: 7: -0.0397348, -1.15991e-11, 6.718e-12
%
% Note: the smaller order solutions are zeros
%
<Node>
0 % Global object number
3 0 0 0 % Nodal coordinates
<Node>
1 % Global object number
3 0 0 1 % Nodal coordinates
<Node>
2 % Global object number
3 1 0 1 % Nodal coordinates
<Node>
3 % Global object number
3 1 0 0 % Nodal coordinates
<Node>
4 % Global object number
3 0 1 0 % Nodal coordinates
<Node>
5 % Global object number
3 0 1 1 % Nodal coordinates
<Node>
6 % Global object number
3 1 1 1 % Nodal coordinates
<Node>
7 % Global object number
3 1 1 0 % Nodal coordinates
<END> % End of nodes
<MaterialLinearElasticity>
0 % Global material number
E: 3000000 % E
A: 0 % A
I: 0 % I
nu: 0.29 % nu
h: 1
RhoC: 1
END: % End of material definition
<END> % End of materials
<Element3DC0LinearHexahedronStrain>
0 % Global object number
0 % Node 1 ID
1 % Node 2 ID
2 % Node 3 ID
3 % Node 4 ID
4 % Node 5 ID
5 % Node 6 ID
6 % Node 7 ID
7 % Node 8 ID
0 % Material ID
<END> % End of elements
<LoadNode>
0 % Global load number
0 % GN of the element on which the load acts
0 % Point number within the element
3 0 0 10000 % Force vector
<LoadNode>
1 % Global load number
0 % GN of the element on which the load acts
1 % Point number within the element
3 10000 0 0 % Force vector
<LoadNode>
2 % Global load number
0 % GN of the element on which the load acts
2 % Point number within the element
3 0 0 -10000 % Force vector
<LoadNode>
3 % Global load number
0 % GN of the element on which the load acts
3 % Point number within the element
3 -10000 0 0 % Force vector
% Essential boundary conditions in form of MFCs are applyed, so that
% the system is fixed and we can solve for displacements. In book the
% MFCs are different than these here.
<LoadBC>
4 % Global load number
0 % GN of element
12 % DOF# in element
1 0 % rhs of MFC
<LoadBC>
5 % Global load number
0 % GN of element
13 % DOF# in element
1 0 % rhs of MFC
<LoadBC>
6 % Global load number
0 % GN of element
15 % DOF# in element
1 0 % rhs of MFC
<LoadBC>
7 % Global load number
0 % GN of element
16 % DOF# in element
1 0 % rhs of MFC
<LoadBC>
8 % Global load number
0 % GN of element
19 % DOF# in element
1 0 % rhs of MFC
<LoadBC>
9 % Global load number
0 % GN of element
22 % DOF# in element
1 0 % rhs of MFC
<LoadBC>
10 % Global load number
0 % GN of element
23 % DOF# in element
1 0 % rhs of MFC
<END> % End of loads
|