File: hexa2.fem

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (132 lines) | stat: -rw-r--r-- 2,959 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
% SLFFEA example "b1" (eight-noded linear brick element) - VALIDATED!
% 
%  Displacements =>
%
%  Node#: 0: -0.086324,  -0.00055514,  0.121079   
%  Node#: 1: 0.0952793,  -0.00331153,  0.114235   
%  Node#: 2: 0.0727445,  0.00768949,  -0.0394109   
%  Node#: 3: -0.0774779,  -0.0115562,  -0.0325665   
%  Node#: 4: 4.02896e-12,  -4.01728e-12,  0.0713128   
%  Node#: 5: 8.22274e-12,  2.78523e-12,  0.0734239   
%  Node#: 6: 0.0439568,  8.17943e-12,  0.00211102   
%  Node#: 7: -0.0397348,  -1.15991e-11,  6.718e-12   
%
% Note: the smaller order solutions are zeros
%
<Node>
	0	% Global object number
	3 0 0 0	% Nodal coordinates
<Node>
	1	% Global object number
	3 0 0 1	% Nodal coordinates
<Node>
	2	% Global object number
	3 1 0 1	% Nodal coordinates
<Node>
	3	% Global object number
	3 1 0 0	% Nodal coordinates
<Node>
	4	% Global object number
	3 0 1 0	% Nodal coordinates
<Node>
	5	% Global object number
	3 0 1 1	% Nodal coordinates
<Node>
	6	% Global object number
	3 1 1 1	% Nodal coordinates
<Node>
	7	% Global object number
	3 1 1 0	% Nodal coordinates

<END>	% End of nodes


<MaterialLinearElasticity>
	0	% Global material number
	E: 3000000	% E
	A: 0	% A
	I: 0	% I
	nu: 0.29	% nu
	h: 1
	RhoC: 1
	END:	% End of material definition

<END>	% End of materials


<Element3DC0LinearHexahedronStrain>
	0	% Global object number
	0	% Node 1 ID
	1	% Node 2 ID
	2	% Node 3 ID
	3	% Node 4 ID
	4	% Node 5 ID
	5	% Node 6 ID
	6	% Node 7 ID
	7	% Node 8 ID
	0	% Material ID

<END>	% End of elements


<LoadNode>
	0	% Global load number
	0	% GN of the element on which the load acts
	0	% Point number within the element
	3 0 0 10000	% Force vector
<LoadNode>
	1	% Global load number
	0	% GN of the element on which the load acts
	1	% Point number within the element
	3 10000 0 0 	% Force vector
<LoadNode>
	2	% Global load number
	0	% GN of the element on which the load acts
	2	% Point number within the element
	3 0 0 -10000	% Force vector
<LoadNode>
	3	% Global load number
	0	% GN of the element on which the load acts
	3	% Point number within the element
	3 -10000 0 0	% Force vector

% Essential boundary conditions in form of MFCs are applyed, so that
% the system is fixed and we can solve for displacements. In book the
% MFCs are different than these here.
<LoadBC>
	4	% Global load number
	  0	% GN of element
	  12	% DOF# in element
	1 0	% rhs of MFC
<LoadBC>
	5	% Global load number
	  0	% GN of element
	  13	% DOF# in element
	1 0	% rhs of MFC
<LoadBC>
	6	% Global load number
	  0	% GN of element
	  15	% DOF# in element
	1 0	% rhs of MFC
<LoadBC>
	7	% Global load number
	  0	% GN of element
	  16	% DOF# in element
	1 0	% rhs of MFC
<LoadBC>
	8	% Global load number
	  0	% GN of element
	  19	% DOF# in element
	1 0	% rhs of MFC
<LoadBC>
	9	% Global load number
	  0	% GN of element
	  22	% DOF# in element
	1 0	% rhs of MFC
<LoadBC>
	10	% Global load number
	  0	% GN of element 
	  23	% DOF# in element
	1 0	% rhs of MFC

<END>	% End of loads