1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
% Example from Grandin, "Fundamentals of the Finite Element Method", pp. 249-55
% Single 4-noded element, fixed at nodes 1 and 4, forces applied at
% nodes 2 and 3
<Node>
0 % Global node number
2 1 2 % Nodal coordinates
<Node>
1 % Global node number
2 4 3 % Nodal coordinates
<Node>
2 % Global node number
2 4 5 % Nodal coordinates
<Node>
3 % Global node number
2 1 4 % Nodal coordinates
<END> % End of nodes
<MaterialLinearElasticity>
0 % Global material number
E : 30000000 % Young modulus
A : 0 % Crossection area
I : 0 % Moment of inertia
nu : 0.3 % Poisson's ratio
h : 1
RhoC : 1
END: % End of material definition
<END> % End of materials
<Element2DC0LinearQuadrilateralStress>
0 % Global element number
0 % Node 1 ID
1 % Node 2 ID
2 % Node 3 ID
3 % Node 4 ID
0 % MaterialLinearElasticity ID
<END> % End of elements
<LoadNode>
0 % Global load number
0 % GN of element on which the load acts
1
2 5 0 % Force vector (first number is the size of a vector)
<LoadNode>
1 % Global load number
0 % GN of element on which the load acts
2
2 10 0 % Force vector (first number is the size of a vector)
<LoadBC>
2 % Global load number
0 % GN of element
0 % DOF# in element
1 0 % rhs of MFC
<LoadBC>
3 % Global load number
0 % GN of element
1 % DOF# in element
1 0 % rhs of MFC
<LoadBC>
4 % Global load number
0 % GN of element
6 % DOF# in element
1 0 % rhs of MFC
<LoadBC>
5 % Global load number
0 % GN of element
7 % DOF# in element
1 0 % rhs of MFC
<END> % End of loads
|