1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
/* eispack/balanc.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< subroutine balanc(nm,n,a,low,igh,scale) >*/
/* Subroutine */ int balanc_(integer *nm, integer *n, doublereal *a, integer *
low, integer *igh, doublereal *scale)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
doublereal d__1;
/* Local variables */
doublereal c__, f, g;
integer i__, j, k, l, m;
doublereal r__, s, b2;
integer jj, iexc;
doublereal radix;
logical noconv;
/*< integer i,j,k,l,m,n,jj,nm,igh,low,iexc >*/
/*< double precision a(nm,n),scale(n) >*/
/*< double precision c,f,g,r,s,b2,radix >*/
/*< logical noconv >*/
/* this subroutine is a translation of the algol procedure balance, */
/* num. math. 13, 293-304(1969) by parlett and reinsch. */
/* handbook for auto. comp., vol.ii-linear algebra, 315-326(1971). */
/* this subroutine balances a real matrix and isolates */
/* eigenvalues whenever possible. */
/* on input */
/* nm must be set to the row dimension of two-dimensional */
/* array parameters as declared in the calling program */
/* dimension statement. */
/* n is the order of the matrix. */
/* a contains the input matrix to be balanced. */
/* on output */
/* a contains the balanced matrix. */
/* low and igh are two integers such that a(i,j) */
/* is equal to zero if */
/* (1) i is greater than j and */
/* (2) j=1,...,low-1 or i=igh+1,...,n. */
/* scale contains information determining the */
/* permutations and scaling factors used. */
/* suppose that the principal submatrix in rows low through igh */
/* has been balanced, that p(j) denotes the index interchanged */
/* with j during the permutation step, and that the elements */
/* of the diagonal matrix used are denoted by d(i,j). then */
/* scale(j) = p(j), for j = 1,...,low-1 */
/* = d(j,j), j = low,...,igh */
/* = p(j) j = igh+1,...,n. */
/* the order in which the interchanges are made is n to igh+1, */
/* then 1 to low-1. */
/* note that 1 is returned for igh if igh is zero formally. */
/* the algol procedure exc contained in balance appears in */
/* balanc in line. (note that the algol roles of identifiers */
/* k,l have been reversed.) */
/* questions and comments should be directed to burton s. garbow, */
/* mathematics and computer science div, argonne national laboratory */
/* this version dated august 1983. */
/* ------------------------------------------------------------------ */
/*< radix = 16.0d0 >*/
/* Parameter adjustments */
--scale;
a_dim1 = *nm;
a_offset = 1 + a_dim1;
a -= a_offset;
/* Function Body */
radix = 16.;
/*< b2 = radix * radix >*/
b2 = radix * radix;
/*< k = 1 >*/
k = 1;
/*< l = n >*/
l = *n;
/*< go to 100 >*/
goto L100;
/* .......... in-line procedure for row and */
/* column exchange .......... */
/*< 20 scale(m) = j >*/
L20:
scale[m] = (doublereal) j;
/*< if (j .eq. m) go to 50 >*/
if (j == m) {
goto L50;
}
/*< do 30 i = 1, l >*/
i__1 = l;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< f = a(i,j) >*/
f = a[i__ + j * a_dim1];
/*< a(i,j) = a(i,m) >*/
a[i__ + j * a_dim1] = a[i__ + m * a_dim1];
/*< a(i,m) = f >*/
a[i__ + m * a_dim1] = f;
/*< 30 continue >*/
/* L30: */
}
/*< do 40 i = k, n >*/
i__1 = *n;
for (i__ = k; i__ <= i__1; ++i__) {
/*< f = a(j,i) >*/
f = a[j + i__ * a_dim1];
/*< a(j,i) = a(m,i) >*/
a[j + i__ * a_dim1] = a[m + i__ * a_dim1];
/*< a(m,i) = f >*/
a[m + i__ * a_dim1] = f;
/*< 40 continue >*/
/* L40: */
}
/*< 50 go to (80,130), iexc >*/
L50:
switch (iexc) {
case 1: goto L80;
case 2: goto L130;
}
/* .......... search for rows isolating an eigenvalue */
/* and push them down .......... */
/*< 80 if (l .eq. 1) go to 280 >*/
L80:
if (l == 1) {
goto L280;
}
/*< l = l - 1 >*/
--l;
/* .......... for j=l step -1 until 1 do -- .......... */
/*< 100 do 120 jj = 1, l >*/
L100:
i__1 = l;
for (jj = 1; jj <= i__1; ++jj) {
/*< j = l + 1 - jj >*/
j = l + 1 - jj;
/*< do 110 i = 1, l >*/
i__2 = l;
for (i__ = 1; i__ <= i__2; ++i__) {
/*< if (i .eq. j) go to 110 >*/
if (i__ == j) {
goto L110;
}
/*< if (a(j,i) .ne. 0.0d0) go to 120 >*/
if (a[j + i__ * a_dim1] != 0.) {
goto L120;
}
/*< 110 continue >*/
L110:
;
}
/*< m = l >*/
m = l;
/*< iexc = 1 >*/
iexc = 1;
/*< go to 20 >*/
goto L20;
/*< 120 continue >*/
L120:
;
}
/*< go to 140 >*/
goto L140;
/* .......... search for columns isolating an eigenvalue */
/* and push them left .......... */
/*< 130 k = k + 1 >*/
L130:
++k;
/*< 140 do 170 j = k, l >*/
L140:
i__1 = l;
for (j = k; j <= i__1; ++j) {
/*< do 150 i = k, l >*/
i__2 = l;
for (i__ = k; i__ <= i__2; ++i__) {
/*< if (i .eq. j) go to 150 >*/
if (i__ == j) {
goto L150;
}
/*< if (a(i,j) .ne. 0.0d0) go to 170 >*/
if (a[i__ + j * a_dim1] != 0.) {
goto L170;
}
/*< 150 continue >*/
L150:
;
}
/*< m = k >*/
m = k;
/*< iexc = 2 >*/
iexc = 2;
/*< go to 20 >*/
goto L20;
/*< 170 continue >*/
L170:
;
}
/* .......... now balance the submatrix in rows k to l .......... */
/*< do 180 i = k, l >*/
i__1 = l;
for (i__ = k; i__ <= i__1; ++i__) {
/*< 180 scale(i) = 1.0d0 >*/
/* L180: */
scale[i__] = 1.;
}
/* .......... iterative loop for norm reduction .......... */
/*< 190 noconv = .false. >*/
L190:
noconv = FALSE_;
/*< do 270 i = k, l >*/
i__1 = l;
for (i__ = k; i__ <= i__1; ++i__) {
/*< c = 0.0d0 >*/
c__ = 0.;
/*< r = 0.0d0 >*/
r__ = 0.;
/*< do 200 j = k, l >*/
i__2 = l;
for (j = k; j <= i__2; ++j) {
/*< if (j .eq. i) go to 200 >*/
if (j == i__) {
goto L200;
}
/*< c = c + dabs(a(j,i)) >*/
c__ += (d__1 = a[j + i__ * a_dim1], abs(d__1));
/*< r = r + dabs(a(i,j)) >*/
r__ += (d__1 = a[i__ + j * a_dim1], abs(d__1));
/*< 200 continue >*/
L200:
;
}
/* .......... guard against zero c or r due to underflow .......... */
/*< if (c .eq. 0.0d0 .or. r .eq. 0.0d0) go to 270 >*/
if (c__ == 0. || r__ == 0.) {
goto L270;
}
/*< g = r / radix >*/
g = r__ / radix;
/*< f = 1.0d0 >*/
f = 1.;
/*< s = c + r >*/
s = c__ + r__;
/*< 210 if (c .ge. g) go to 220 >*/
L210:
if (c__ >= g) {
goto L220;
}
/*< f = f * radix >*/
f *= radix;
/*< c = c * b2 >*/
c__ *= b2;
/*< go to 210 >*/
goto L210;
/*< 220 g = r * radix >*/
L220:
g = r__ * radix;
/*< 230 if (c .lt. g) go to 240 >*/
L230:
if (c__ < g) {
goto L240;
}
/*< f = f / radix >*/
f /= radix;
/*< c = c / b2 >*/
c__ /= b2;
/*< go to 230 >*/
goto L230;
/* .......... now balance .......... */
/*< 240 if ((c + r) / f .ge. 0.95d0 * s) go to 270 >*/
L240:
if ((c__ + r__) / f >= s * .95) {
goto L270;
}
/*< g = 1.0d0 / f >*/
g = 1. / f;
/*< scale(i) = scale(i) * f >*/
scale[i__] *= f;
/*< noconv = .true. >*/
noconv = TRUE_;
/*< do 250 j = k, n >*/
i__2 = *n;
for (j = k; j <= i__2; ++j) {
/*< 250 a(i,j) = a(i,j) * g >*/
/* L250: */
a[i__ + j * a_dim1] *= g;
}
/*< do 260 j = 1, l >*/
i__2 = l;
for (j = 1; j <= i__2; ++j) {
/*< 260 a(j,i) = a(j,i) * f >*/
/* L260: */
a[j + i__ * a_dim1] *= f;
}
/*< 270 continue >*/
L270:
;
}
/*< if (noconv) go to 190 >*/
if (noconv) {
goto L190;
}
/*< 280 low = k >*/
L280:
*low = k;
/*< igh = l >*/
*igh = l;
/*< return >*/
return 0;
/*< end >*/
} /* balanc_ */
#ifdef __cplusplus
}
#endif
|