1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
/* eispack/otqlrat.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static doublereal c_b11 = 1.;
/*< subroutine tqlrat(n,d,e2,ierr) >*/
/* Subroutine */ int tqlrat_(integer *n, doublereal *d__, doublereal *e2,
integer *ierr)
{
/* System generated locals */
integer i__1, i__2;
doublereal d__1, d__2;
/* Builtin functions */
double sqrt(doublereal), d_sign(doublereal *, doublereal *);
/* Local variables */
doublereal b=0, c__=0, f, g, h__;
integer i__, j, l, m;
doublereal p, r__, s, t;
integer l1, ii, mml;
extern doublereal pythag_(doublereal *, doublereal *), epslon_(doublereal
*);
/*< integer i,j,l,m,n,ii,l1,mml,ierr >*/
/*< double precision d(n),e2(n) >*/
/*< double precision b,c,f,g,h,p,r,s,t,epslon,pythag >*/
/* this subroutine is a translation of the algol procedure tqlrat, */
/* algorithm 464, comm. acm 16, 689(1973) by reinsch. */
/* this subroutine finds the eigenvalues of a symmetric */
/* tridiagonal matrix by the rational ql method. */
/* on input */
/* n is the order of the matrix. */
/* d contains the diagonal elements of the input matrix. */
/* e2 contains the squares of the subdiagonal elements of the */
/* input matrix in its last n-1 positions. e2(1) is arbitrary. */
/* on output */
/* d contains the eigenvalues in ascending order. if an */
/* error exit is made, the eigenvalues are correct and */
/* ordered for indices 1,2,...ierr-1, but may not be */
/* the smallest eigenvalues. */
/* e2 has been destroyed. */
/* ierr is set to */
/* zero for normal return, */
/* j if the j-th eigenvalue has not been */
/* determined after 30 iterations. */
/* calls pythag for dsqrt(a*a + b*b) . */
/* questions and comments should be directed to burton s. garbow, */
/* mathematics and computer science div, argonne national laboratory */
/* this version dated august 1983. */
/* ------------------------------------------------------------------ */
/*< ierr = 0 >*/
/* Parameter adjustments */
--e2;
--d__;
/* Function Body */
*ierr = 0;
/*< if (n .eq. 1) go to 1001 >*/
if (*n == 1) {
goto L1001;
}
/*< do 100 i = 2, n >*/
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
/*< 100 e2(i-1) = e2(i) >*/
/* L100: */
e2[i__ - 1] = e2[i__];
}
/*< f = 0.0d0 >*/
f = 0.;
/*< t = 0.0d0 >*/
t = 0.;
/*< e2(n) = 0.0d0 >*/
e2[*n] = 0.;
/*< do 290 l = 1, n >*/
i__1 = *n;
for (l = 1; l <= i__1; ++l) {
/*< j = 0 >*/
j = 0;
/*< h = dabs(d(l)) + dsqrt(e2(l)) >*/
h__ = (d__1 = d__[l], abs(d__1)) + sqrt(e2[l]);
/*< if (t .gt. h) go to 105 >*/
if (t > h__) {
goto L105;
}
/*< t = h >*/
t = h__;
/*< b = epslon(t) >*/
b = epslon_(&t);
/*< c = b * b >*/
c__ = b * b;
/* .......... look for small squared sub-diagonal element .......... */
/*< 105 do 110 m = l, n >*/
L105:
i__2 = *n;
for (m = l; m <= i__2; ++m) {
/*< if (e2(m) .le. c) go to 120 >*/
if (e2[m] <= c__) {
goto L120;
}
/* .......... e2(n) is always zero, so there is no exit */
/* through the bottom of the loop .......... */
/*< 110 continue >*/
/* L110: */
}
/*< 120 if (m .eq. l) go to 210 >*/
L120:
if (m == l) {
goto L210;
}
/*< 130 if (j .eq. 30) go to 1000 >*/
L130:
if (j == 30) {
goto L1000;
}
/*< j = j + 1 >*/
++j;
/* .......... form shift .......... */
/*< l1 = l + 1 >*/
l1 = l + 1;
/*< s = dsqrt(e2(l)) >*/
s = sqrt(e2[l]);
/*< g = d(l) >*/
g = d__[l];
/*< p = (d(l1) - g) / (2.0d0 * s) >*/
p = (d__[l1] - g) / (s * 2.);
/*< r = pythag(p,1.0d0) >*/
r__ = pythag_(&p, &c_b11);
/*< d(l) = s / (p + dsign(r,p)) >*/
d__[l] = s / (p + d_sign(&r__, &p));
/*< h = g - d(l) >*/
h__ = g - d__[l];
/*< do 140 i = l1, n >*/
i__2 = *n;
for (i__ = l1; i__ <= i__2; ++i__) {
/*< 140 d(i) = d(i) - h >*/
/* L140: */
d__[i__] -= h__;
}
/*< f = f + h >*/
f += h__;
/* .......... rational ql transformation .......... */
/*< g = d(m) >*/
g = d__[m];
/*< if (g .eq. 0.0d0) g = b >*/
if (g == 0.) {
g = b;
}
/*< h = g >*/
h__ = g;
/*< s = 0.0d0 >*/
s = 0.;
/*< mml = m - l >*/
mml = m - l;
/* .......... for i=m-1 step -1 until l do -- .......... */
/*< do 200 ii = 1, mml >*/
i__2 = mml;
for (ii = 1; ii <= i__2; ++ii) {
/*< i = m - ii >*/
i__ = m - ii;
/*< p = g * h >*/
p = g * h__;
/*< r = p + e2(i) >*/
r__ = p + e2[i__];
/*< e2(i+1) = s * r >*/
e2[i__ + 1] = s * r__;
/*< s = e2(i) / r >*/
s = e2[i__] / r__;
/*< d(i+1) = h + s * (h + d(i)) >*/
d__[i__ + 1] = h__ + s * (h__ + d__[i__]);
/*< g = d(i) - e2(i) / g >*/
g = d__[i__] - e2[i__] / g;
/*< if (g .eq. 0.0d0) g = b >*/
if (g == 0.) {
g = b;
}
/*< h = g * p / r >*/
h__ = g * p / r__;
/*< 200 continue >*/
/* L200: */
}
/*< e2(l) = s * g >*/
e2[l] = s * g;
/*< d(l) = h >*/
d__[l] = h__;
/* .......... guard against underflow in convergence test .......... */
/*< if (h .eq. 0.0d0) go to 210 >*/
if (h__ == 0.) {
goto L210;
}
/*< if (dabs(e2(l)) .le. dabs(c/h)) go to 210 >*/
if ((d__1 = e2[l], abs(d__1)) <= (d__2 = c__ / h__, abs(d__2))) {
goto L210;
}
/*< e2(l) = h * e2(l) >*/
e2[l] = h__ * e2[l];
/*< if (e2(l) .ne. 0.0d0) go to 130 >*/
if (e2[l] != 0.) {
goto L130;
}
/*< 210 p = d(l) + f >*/
L210:
p = d__[l] + f;
/* .......... order eigenvalues .......... */
/*< if (l .eq. 1) go to 250 >*/
if (l == 1) {
goto L250;
}
/* .......... for i=l step -1 until 2 do -- .......... */
/*< do 230 ii = 2, l >*/
i__2 = l;
for (ii = 2; ii <= i__2; ++ii) {
/*< i = l + 2 - ii >*/
i__ = l + 2 - ii;
/*< if (p .ge. d(i-1)) go to 270 >*/
if (p >= d__[i__ - 1]) {
goto L270;
}
/*< d(i) = d(i-1) >*/
d__[i__] = d__[i__ - 1];
/*< 230 continue >*/
/* L230: */
}
/*< 250 i = 1 >*/
L250:
i__ = 1;
/*< 270 d(i) = p >*/
L270:
d__[i__] = p;
/*< 290 continue >*/
/* L290: */
}
/*< go to 1001 >*/
goto L1001;
/* .......... set error -- no convergence to an */
/* eigenvalue after 30 iterations .......... */
/*< 1000 ierr = l >*/
L1000:
*ierr = l;
/*< 1001 return >*/
L1001:
return 0;
/*< end >*/
} /* tqlrat_ */
#ifdef __cplusplus
}
#endif
|