1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
/* eispack/rebak.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< subroutine rebak(nm,n,b,dl,m,z) >*/
/* Subroutine */ int rebak_(integer *nm, integer *n, doublereal *b,
doublereal *dl, integer *m, doublereal *z__)
{
/* System generated locals */
integer b_dim1, b_offset, z_dim1, z_offset, i__1, i__2, i__3;
/* Local variables */
integer i__, j, k;
doublereal x;
integer i1, ii;
/*< integer i,j,k,m,n,i1,ii,nm >*/
/*< double precision b(nm,n),dl(n),z(nm,m) >*/
/*< double precision x >*/
/* this subroutine is a translation of the algol procedure rebaka, */
/* num. math. 11, 99-110(1968) by martin and wilkinson. */
/* handbook for auto. comp., vol.ii-linear algebra, 303-314(1971). */
/* this subroutine forms the eigenvectors of a generalized */
/* symmetric eigensystem by back transforming those of the */
/* derived symmetric matrix determined by reduc. */
/* on input */
/* nm must be set to the row dimension of two-dimensional */
/* array parameters as declared in the calling program */
/* dimension statement. */
/* n is the order of the matrix system. */
/* b contains information about the similarity transformation */
/* (cholesky decomposition) used in the reduction by reduc */
/* in its strict lower triangle. */
/* dl contains further information about the transformation. */
/* m is the number of eigenvectors to be back transformed. */
/* z contains the eigenvectors to be back transformed */
/* in its first m columns. */
/* on output */
/* z contains the transformed eigenvectors */
/* in its first m columns. */
/* questions and comments should be directed to burton s. garbow, */
/* mathematics and computer science div, argonne national laboratory */
/* this version dated august 1983. */
/* ------------------------------------------------------------------ */
/*< if (m .eq. 0) go to 200 >*/
/* Parameter adjustments */
--dl;
b_dim1 = *nm;
b_offset = 1 + b_dim1;
b -= b_offset;
z_dim1 = *nm;
z_offset = 1 + z_dim1;
z__ -= z_offset;
/* Function Body */
if (*m == 0) {
goto L200;
}
/*< do 100 j = 1, m >*/
i__1 = *m;
for (j = 1; j <= i__1; ++j) {
/* .......... for i=n step -1 until 1 do -- .......... */
/*< do 100 ii = 1, n >*/
i__2 = *n;
for (ii = 1; ii <= i__2; ++ii) {
/*< i = n + 1 - ii >*/
i__ = *n + 1 - ii;
/*< i1 = i + 1 >*/
i1 = i__ + 1;
/*< x = z(i,j) >*/
x = z__[i__ + j * z_dim1];
/*< if (i .eq. n) go to 80 >*/
if (i__ == *n) {
goto L80;
}
/*< do 60 k = i1, n >*/
i__3 = *n;
for (k = i1; k <= i__3; ++k) {
/*< 60 x = x - b(k,i) * z(k,j) >*/
/* L60: */
x -= b[k + i__ * b_dim1] * z__[k + j * z_dim1];
}
/*< 80 z(i,j) = x / dl(i) >*/
L80:
z__[i__ + j * z_dim1] = x / dl[i__];
/*< 100 continue >*/
/* L100: */
}
}
/*< 200 return >*/
L200:
return 0;
/*< end >*/
} /* rebak_ */
#ifdef __cplusplus
}
#endif
|