File: tql2.c

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (357 lines) | stat: -rw-r--r-- 10,388 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/* eispack/tql2.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static doublereal c_b10 = 1.;

/*<       subroutine tql2(nm,n,d,e,z,ierr) >*/
/* Subroutine */ int tql2_(integer *nm, integer *n, doublereal *d__, 
        doublereal *e, doublereal *z__, integer *ierr)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2, i__3;
    doublereal d__1, d__2;

    /* Builtin functions */
    double d_sign(doublereal *, doublereal *);

    /* Local variables */
    doublereal c__, f, g, h__;
    integer i__, j, k, l, m;
    doublereal p, r__, s, c2, c3=0;
    integer l1, l2;
    doublereal s2=0;
    integer ii;
    doublereal dl1, el1;
    integer mml;
    doublereal tst1, tst2;
    extern doublereal pythag_(doublereal *, doublereal *);


/*<       integer i,j,k,l,m,n,ii,l1,l2,nm,mml,ierr >*/
/*<       double precision d(n),e(n),z(nm,n) >*/
/*<       double precision c,c2,c3,dl1,el1,f,g,h,p,r,s,s2,tst1,tst2,pythag >*/

/*     this subroutine is a translation of the algol procedure tql2, */
/*     num. math. 11, 293-306(1968) by bowdler, martin, reinsch, and */
/*     wilkinson. */
/*     handbook for auto. comp., vol.ii-linear algebra, 227-240(1971). */

/*     this subroutine finds the eigenvalues and eigenvectors */
/*     of a symmetric tridiagonal matrix by the ql method. */
/*     the eigenvectors of a full symmetric matrix can also */
/*     be found if  tred2  has been used to reduce this */
/*     full matrix to tridiagonal form. */

/*     on input */

/*        nm must be set to the row dimension of two-dimensional */
/*          array parameters as declared in the calling program */
/*          dimension statement. */

/*        n is the order of the matrix. */

/*        d contains the diagonal elements of the input matrix. */

/*        e contains the subdiagonal elements of the input matrix */
/*          in its last n-1 positions.  e(1) is arbitrary. */

/*        z contains the transformation matrix produced in the */
/*          reduction by  tred2, if performed.  if the eigenvectors */
/*          of the tridiagonal matrix are desired, z must contain */
/*          the identity matrix. */

/*      on output */

/*        d contains the eigenvalues in ascending order.  if an */
/*          error exit is made, the eigenvalues are correct but */
/*          unordered for indices 1,2,...,ierr-1. */

/*        e has been destroyed. */

/*        z contains orthonormal eigenvectors of the symmetric */
/*          tridiagonal (or full) matrix.  if an error exit is made, */
/*          z contains the eigenvectors associated with the stored */
/*          eigenvalues. */

/*        ierr is set to */
/*          zero       for normal return, */
/*          j          if the j-th eigenvalue has not been */
/*                     determined after 30 iterations. */

/*     calls pythag for  dsqrt(a*a + b*b) . */

/*     questions and comments should be directed to burton s. garbow, */
/*     mathematics and computer science div, argonne national laboratory */

/*     this version dated august 1983. */

/*     ------------------------------------------------------------------ */

/*<       ierr = 0 >*/
    /* Parameter adjustments */
    z_dim1 = *nm;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --e;
    --d__;

    /* Function Body */
    *ierr = 0;
/*<       if (n .eq. 1) go to 1001 >*/
    if (*n == 1) {
        goto L1001;
    }

/*<       do 100 i = 2, n >*/
    i__1 = *n;
    for (i__ = 2; i__ <= i__1; ++i__) {
/*<   100 e(i-1) = e(i) >*/
/* L100: */
        e[i__ - 1] = e[i__];
    }

/*<       f = 0.0d0 >*/
    f = 0.;
/*<       tst1 = 0.0d0 >*/
    tst1 = 0.;
/*<       e(n) = 0.0d0 >*/
    e[*n] = 0.;

/*<       do 240 l = 1, n >*/
    i__1 = *n;
    for (l = 1; l <= i__1; ++l) {
/*<          j = 0 >*/
        j = 0;
/*<          h = dabs(d(l)) + dabs(e(l)) >*/
        h__ = (d__1 = d__[l], abs(d__1)) + (d__2 = e[l], abs(d__2));
/*<          if (tst1 .lt. h) tst1 = h >*/
        if (tst1 < h__) {
            tst1 = h__;
        }
/*     .......... look for small sub-diagonal element .......... */
/*<          do 110 m = l, n >*/
        i__2 = *n;
        for (m = l; m <= i__2; ++m) {
/*<             tst2 = tst1 + dabs(e(m)) >*/
            tst2 = tst1 + (d__1 = e[m], abs(d__1));
/*<             if (tst2 .eq. tst1) go to 120 >*/
            if (tst2 == tst1) {
                goto L120;
            }
/*     .......... e(n) is always zero, so there is no exit */
/*                through the bottom of the loop .......... */
/*<   110    continue >*/
/* L110: */
        }

/*<   120    if (m .eq. l) go to 220 >*/
L120:
        if (m == l) {
            goto L220;
        }
/*<   130    if (j .eq. 30) go to 1000 >*/
L130:
        if (j == 30) {
            goto L1000;
        }
/*<          j = j + 1 >*/
        ++j;
/*     .......... form shift .......... */
/*<          l1 = l + 1 >*/
        l1 = l + 1;
/*<          l2 = l1 + 1 >*/
        l2 = l1 + 1;
/*<          g = d(l) >*/
        g = d__[l];
/*<          p = (d(l1) - g) / (2.0d0 * e(l)) >*/
        p = (d__[l1] - g) / (e[l] * 2.);
/*<          r = pythag(p,1.0d0) >*/
        r__ = pythag_(&p, &c_b10);
/*<          d(l) = e(l) / (p + dsign(r,p)) >*/
        d__[l] = e[l] / (p + d_sign(&r__, &p));
/*<          d(l1) = e(l) * (p + dsign(r,p)) >*/
        d__[l1] = e[l] * (p + d_sign(&r__, &p));
/*<          dl1 = d(l1) >*/
        dl1 = d__[l1];
/*<          h = g - d(l) >*/
        h__ = g - d__[l];
/*<          if (l2 .gt. n) go to 145 >*/
        if (l2 > *n) {
            goto L145;
        }

/*<          do 140 i = l2, n >*/
        i__2 = *n;
        for (i__ = l2; i__ <= i__2; ++i__) {
/*<   140    d(i) = d(i) - h >*/
/* L140: */
            d__[i__] -= h__;
        }

/*<   145    f = f + h >*/
L145:
        f += h__;
/*     .......... ql transformation .......... */
/*<          p = d(m) >*/
        p = d__[m];
/*<          c = 1.0d0 >*/
        c__ = 1.;
/*<          c2 = c >*/
        c2 = c__;
/*<          el1 = e(l1) >*/
        el1 = e[l1];
/*<          s = 0.0d0 >*/
        s = 0.;
/*<          mml = m - l >*/
        mml = m - l;
/*     .......... for i=m-1 step -1 until l do -- .......... */
/*<          do 200 ii = 1, mml >*/
        i__2 = mml;
        for (ii = 1; ii <= i__2; ++ii) {
/*<             c3 = c2 >*/
            c3 = c2;
/*<             c2 = c >*/
            c2 = c__;
/*<             s2 = s >*/
            s2 = s;
/*<             i = m - ii >*/
            i__ = m - ii;
/*<             g = c * e(i) >*/
            g = c__ * e[i__];
/*<             h = c * p >*/
            h__ = c__ * p;
/*<             r = pythag(p,e(i)) >*/
            r__ = pythag_(&p, &e[i__]);
/*<             e(i+1) = s * r >*/
            e[i__ + 1] = s * r__;
/*<             s = e(i) / r >*/
            s = e[i__] / r__;
/*<             c = p / r >*/
            c__ = p / r__;
/*<             p = c * d(i) - s * g >*/
            p = c__ * d__[i__] - s * g;
/*<             d(i+1) = h + s * (c * g + s * d(i)) >*/
            d__[i__ + 1] = h__ + s * (c__ * g + s * d__[i__]);
/*     .......... form vector .......... */
/*<             do 180 k = 1, n >*/
            i__3 = *n;
            for (k = 1; k <= i__3; ++k) {
/*<                h = z(k,i+1) >*/
                h__ = z__[k + (i__ + 1) * z_dim1];
/*<                z(k,i+1) = s * z(k,i) + c * h >*/
                z__[k + (i__ + 1) * z_dim1] = s * z__[k + i__ * z_dim1] + c__ 
                        * h__;
/*<                z(k,i) = c * z(k,i) - s * h >*/
                z__[k + i__ * z_dim1] = c__ * z__[k + i__ * z_dim1] - s * h__;
/*<   180       continue >*/
/* L180: */
            }

/*<   200    continue >*/
/* L200: */
        }

/*<          p = -s * s2 * c3 * el1 * e(l) / dl1 >*/
        p = -s * s2 * c3 * el1 * e[l] / dl1;
/*<          e(l) = s * p >*/
        e[l] = s * p;
/*<          d(l) = c * p >*/
        d__[l] = c__ * p;
/*<          tst2 = tst1 + dabs(e(l)) >*/
        tst2 = tst1 + (d__1 = e[l], abs(d__1));
/*<          if (tst2 .gt. tst1) go to 130 >*/
        if (tst2 > tst1) {
            goto L130;
        }
/*<   220    d(l) = d(l) + f >*/
L220:
        d__[l] += f;
/*<   240 continue >*/
/* L240: */
    }
/*     .......... order eigenvalues and eigenvectors .......... */
/*<       do 300 ii = 2, n >*/
    i__1 = *n;
    for (ii = 2; ii <= i__1; ++ii) {
/*<          i = ii - 1 >*/
        i__ = ii - 1;
/*<          k = i >*/
        k = i__;
/*<          p = d(i) >*/
        p = d__[i__];

/*<          do 260 j = ii, n >*/
        i__2 = *n;
        for (j = ii; j <= i__2; ++j) {
/*<             if (d(j) .ge. p) go to 260 >*/
            if (d__[j] >= p) {
                goto L260;
            }
/*<             k = j >*/
            k = j;
/*<             p = d(j) >*/
            p = d__[j];
/*<   260    continue >*/
L260:
            ;
        }

/*<          if (k .eq. i) go to 300 >*/
        if (k == i__) {
            goto L300;
        }
/*<          d(k) = d(i) >*/
        d__[k] = d__[i__];
/*<          d(i) = p >*/
        d__[i__] = p;

/*<          do 280 j = 1, n >*/
        i__2 = *n;
        for (j = 1; j <= i__2; ++j) {
/*<             p = z(j,i) >*/
            p = z__[j + i__ * z_dim1];
/*<             z(j,i) = z(j,k) >*/
            z__[j + i__ * z_dim1] = z__[j + k * z_dim1];
/*<             z(j,k) = p >*/
            z__[j + k * z_dim1] = p;
/*<   280    continue >*/
/* L280: */
        }

/*<   300 continue >*/
L300:
        ;
    }

/*<       go to 1001 >*/
    goto L1001;
/*     .......... set error -- no convergence to an */
/*                eigenvalue after 30 iterations .......... */
/*<  1000 ierr = l >*/
L1000:
    *ierr = l;
/*<  1001 return >*/
L1001:
    return 0;
/*<       end >*/
} /* tql2_ */

#ifdef __cplusplus
        }
#endif