File: dgeqr2.c

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (203 lines) | stat: -rw-r--r-- 6,085 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/* lapack/double/dgeqr2.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;

/*<       SUBROUTINE DGEQR2( M, N, A, LDA, TAU, WORK, INFO ) >*/
/* Subroutine */ int dgeqr2_(integer *m, integer *n, doublereal *a, integer *
        lda, doublereal *tau, doublereal *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, k;
    doublereal aii;
    extern /* Subroutine */ int dlarf_(char *, integer *, integer *, 
            doublereal *, integer *, doublereal *, doublereal *, integer *, 
            doublereal *, ftnlen), dlarfg_(integer *, doublereal *, 
            doublereal *, integer *, doublereal *), xerbla_(char *, integer *,
             ftnlen);


/*  -- LAPACK routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     February 29, 1992 */

/*     .. Scalar Arguments .. */
/*<       INTEGER            INFO, LDA, M, N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGEQR2 computes a QR factorization of a real m by n matrix A: */
/*  A = Q * R. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the m by n matrix A. */
/*          On exit, the elements on and above the diagonal of the array */
/*          contain the min(m,n) by n upper trapezoidal matrix R (R is */
/*          upper triangular if m >= n); the elements below the diagonal, */
/*          with the array TAU, represent the orthogonal matrix Q as a */
/*          product of elementary reflectors (see Further Details). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors (see Further */
/*          Details). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a real scalar, and v is a real vector with */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
/*  and tau in TAU(i). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       DOUBLE PRECISION   ONE >*/
/*<       PARAMETER          ( ONE = 1.0D+0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       INTEGER            I, K >*/
/*<       DOUBLE PRECISION   AII >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           DLARF, DLARFG, XERBLA >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          MAX, MIN >*/
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

/*<       INFO = 0 >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
/*<       IF( M.LT.0 ) THEN >*/
    if (*m < 0) {
/*<          INFO = -1 >*/
        *info = -1;
/*<       ELSE IF( N.LT.0 ) THEN >*/
    } else if (*n < 0) {
/*<          INFO = -2 >*/
        *info = -2;
/*<       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN >*/
    } else if (*lda < max(1,*m)) {
/*<          INFO = -4 >*/
        *info = -4;
/*<       END IF >*/
    }
/*<       IF( INFO.NE.0 ) THEN >*/
    if (*info != 0) {
/*<          CALL XERBLA( 'DGEQR2', -INFO ) >*/
        i__1 = -(*info);
        xerbla_("DGEQR2", &i__1, (ftnlen)6);
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*<       K = MIN( M, N ) >*/
    k = min(*m,*n);

/*<       DO 10 I = 1, K >*/
    i__1 = k;
    for (i__ = 1; i__ <= i__1; ++i__) {

/*        Generate elementary reflector H(i) to annihilate A(i+1:m,i) */

/*<    >*/
        i__2 = *m - i__ + 1;
/* Computing MIN */
        i__3 = i__ + 1;
        dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ * a_dim1]
                , &c__1, &tau[i__]);
/*<          IF( I.LT.N ) THEN >*/
        if (i__ < *n) {

/*           Apply H(i) to A(i:m,i+1:n) from the left */

/*<             AII = A( I, I ) >*/
            aii = a[i__ + i__ * a_dim1];
/*<             A( I, I ) = ONE >*/
            a[i__ + i__ * a_dim1] = 1.;
/*<    >*/
            i__2 = *m - i__ + 1;
            i__3 = *n - i__;
            dlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &tau[
                    i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1], (
                    ftnlen)4);
/*<             A( I, I ) = AII >*/
            a[i__ + i__ * a_dim1] = aii;
/*<          END IF >*/
        }
/*<    10 CONTINUE >*/
/* L10: */
    }
/*<       RETURN >*/
    return 0;

/*     End of DGEQR2 */

/*<       END >*/
} /* dgeqr2_ */

#ifdef __cplusplus
        }
#endif