1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
/* lapack/double/dgghrd.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static doublereal c_b10 = 0.;
static doublereal c_b11 = 1.;
static integer c__1 = 1;
/*< >*/
/* Subroutine */ int dgghrd_(char *compq, char *compz, integer *n, integer *
ilo, integer *ihi, doublereal *a, integer *lda, doublereal *b,
integer *ldb, doublereal *q, integer *ldq, doublereal *z__, integer *
ldz, integer *info, ftnlen compq_len, ftnlen compz_len)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
z_offset, i__1, i__2, i__3;
/* Local variables */
doublereal c__, s;
logical ilq=0, ilz=0;
integer jcol;
doublereal temp;
extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *);
integer jrow;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int dlaset_(char *, integer *, integer *,
doublereal *, doublereal *, doublereal *, integer *, ftnlen),
dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *), xerbla_(char *, integer *, ftnlen);
integer icompq, icompz;
(void)compq_len;
(void)compz_len;
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* September 30, 1994 */
/* .. Scalar Arguments .. */
/*< CHARACTER COMPQ, COMPZ >*/
/*< INTEGER IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N >*/
/* .. */
/* .. Array Arguments .. */
/*< >*/
/* .. */
/* Purpose */
/* ======= */
/* DGGHRD reduces a pair of real matrices (A,B) to generalized upper */
/* Hessenberg form using orthogonal transformations, where A is a */
/* general matrix and B is upper triangular: Q' * A * Z = H and */
/* Q' * B * Z = T, where H is upper Hessenberg, T is upper triangular, */
/* and Q and Z are orthogonal, and ' means transpose. */
/* The orthogonal matrices Q and Z are determined as products of Givens */
/* rotations. They may either be formed explicitly, or they may be */
/* postmultiplied into input matrices Q1 and Z1, so that */
/* Q1 * A * Z1' = (Q1*Q) * H * (Z1*Z)' */
/* Q1 * B * Z1' = (Q1*Q) * T * (Z1*Z)' */
/* Arguments */
/* ========= */
/* COMPQ (input) CHARACTER*1 */
/* = 'N': do not compute Q; */
/* = 'I': Q is initialized to the unit matrix, and the */
/* orthogonal matrix Q is returned; */
/* = 'V': Q must contain an orthogonal matrix Q1 on entry, */
/* and the product Q1*Q is returned. */
/* COMPZ (input) CHARACTER*1 */
/* = 'N': do not compute Z; */
/* = 'I': Z is initialized to the unit matrix, and the */
/* orthogonal matrix Z is returned; */
/* = 'V': Z must contain an orthogonal matrix Z1 on entry, */
/* and the product Z1*Z is returned. */
/* N (input) INTEGER */
/* The order of the matrices A and B. N >= 0. */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* It is assumed that A is already upper triangular in rows and */
/* columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set */
/* by a previous call to DGGBAL; otherwise they should be set */
/* to 1 and N respectively. */
/* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/* On entry, the N-by-N general matrix to be reduced. */
/* On exit, the upper triangle and the first subdiagonal of A */
/* are overwritten with the upper Hessenberg matrix H, and the */
/* rest is set to zero. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
/* On entry, the N-by-N upper triangular matrix B. */
/* On exit, the upper triangular matrix T = Q' B Z. The */
/* elements below the diagonal are set to zero. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
/* If COMPQ='N': Q is not referenced. */
/* If COMPQ='I': on entry, Q need not be set, and on exit it */
/* contains the orthogonal matrix Q, where Q' */
/* is the product of the Givens transformations */
/* which are applied to A and B on the left. */
/* If COMPQ='V': on entry, Q must contain an orthogonal matrix */
/* Q1, and on exit this is overwritten by Q1*Q. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. */
/* LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. */
/* Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N) */
/* If COMPZ='N': Z is not referenced. */
/* If COMPZ='I': on entry, Z need not be set, and on exit it */
/* contains the orthogonal matrix Z, which is */
/* the product of the Givens transformations */
/* which are applied to A and B on the right. */
/* If COMPZ='V': on entry, Z must contain an orthogonal matrix */
/* Z1, and on exit this is overwritten by Z1*Z. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. */
/* LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* Further Details */
/* =============== */
/* This routine reduces A to Hessenberg and B to triangular form by */
/* an unblocked reduction, as described in _Matrix_Computations_, */
/* by Golub and Van Loan (Johns Hopkins Press.) */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ONE, ZERO >*/
/*< PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL ILQ, ILZ >*/
/*< INTEGER ICOMPQ, ICOMPZ, JCOL, JROW >*/
/*< DOUBLE PRECISION C, S, TEMP >*/
/* .. */
/* .. External Functions .. */
/*< LOGICAL LSAME >*/
/*< EXTERNAL LSAME >*/
/* .. */
/* .. External Subroutines .. */
/*< EXTERNAL DLARTG, DLASET, DROT, XERBLA >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC MAX >*/
/* .. */
/* .. Executable Statements .. */
/* Decode COMPQ */
/*< IF( LSAME( COMPQ, 'N' ) ) THEN >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
/* Function Body */
if (lsame_(compq, "N", (ftnlen)1, (ftnlen)1)) {
/*< ILQ = .FALSE. >*/
ilq = FALSE_;
/*< ICOMPQ = 1 >*/
icompq = 1;
/*< ELSE IF( LSAME( COMPQ, 'V' ) ) THEN >*/
} else if (lsame_(compq, "V", (ftnlen)1, (ftnlen)1)) {
/*< ILQ = .TRUE. >*/
ilq = TRUE_;
/*< ICOMPQ = 2 >*/
icompq = 2;
/*< ELSE IF( LSAME( COMPQ, 'I' ) ) THEN >*/
} else if (lsame_(compq, "I", (ftnlen)1, (ftnlen)1)) {
/*< ILQ = .TRUE. >*/
ilq = TRUE_;
/*< ICOMPQ = 3 >*/
icompq = 3;
/*< ELSE >*/
} else {
/*< ICOMPQ = 0 >*/
icompq = 0;
/*< END IF >*/
}
/* Decode COMPZ */
/*< IF( LSAME( COMPZ, 'N' ) ) THEN >*/
if (lsame_(compz, "N", (ftnlen)1, (ftnlen)1)) {
/*< ILZ = .FALSE. >*/
ilz = FALSE_;
/*< ICOMPZ = 1 >*/
icompz = 1;
/*< ELSE IF( LSAME( COMPZ, 'V' ) ) THEN >*/
} else if (lsame_(compz, "V", (ftnlen)1, (ftnlen)1)) {
/*< ILZ = .TRUE. >*/
ilz = TRUE_;
/*< ICOMPZ = 2 >*/
icompz = 2;
/*< ELSE IF( LSAME( COMPZ, 'I' ) ) THEN >*/
} else if (lsame_(compz, "I", (ftnlen)1, (ftnlen)1)) {
/*< ILZ = .TRUE. >*/
ilz = TRUE_;
/*< ICOMPZ = 3 >*/
icompz = 3;
/*< ELSE >*/
} else {
/*< ICOMPZ = 0 >*/
icompz = 0;
/*< END IF >*/
}
/* Test the input parameters. */
/*< INFO = 0 >*/
*info = 0;
/*< IF( ICOMPQ.LE.0 ) THEN >*/
if (icompq <= 0) {
/*< INFO = -1 >*/
*info = -1;
/*< ELSE IF( ICOMPZ.LE.0 ) THEN >*/
} else if (icompz <= 0) {
/*< INFO = -2 >*/
*info = -2;
/*< ELSE IF( N.LT.0 ) THEN >*/
} else if (*n < 0) {
/*< INFO = -3 >*/
*info = -3;
/*< ELSE IF( ILO.LT.1 ) THEN >*/
} else if (*ilo < 1) {
/*< INFO = -4 >*/
*info = -4;
/*< ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN >*/
} else if (*ihi > *n || *ihi < *ilo - 1) {
/*< INFO = -5 >*/
*info = -5;
/*< ELSE IF( LDA.LT.MAX( 1, N ) ) THEN >*/
} else if (*lda < max(1,*n)) {
/*< INFO = -7 >*/
*info = -7;
/*< ELSE IF( LDB.LT.MAX( 1, N ) ) THEN >*/
} else if (*ldb < max(1,*n)) {
/*< INFO = -9 >*/
*info = -9;
/*< ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN >*/
} else if ((ilq && *ldq < *n) || *ldq < 1) {
/*< INFO = -11 >*/
*info = -11;
/*< ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN >*/
} else if ((ilz && *ldz < *n) || *ldz < 1) {
/*< INFO = -13 >*/
*info = -13;
/*< END IF >*/
}
/*< IF( INFO.NE.0 ) THEN >*/
if (*info != 0) {
/*< CALL XERBLA( 'DGGHRD', -INFO ) >*/
i__1 = -(*info);
xerbla_("DGGHRD", &i__1, (ftnlen)6);
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/* Initialize Q and Z if desired. */
/*< >*/
if (icompq == 3) {
dlaset_("Full", n, n, &c_b10, &c_b11, &q[q_offset], ldq, (ftnlen)4);
}
/*< >*/
if (icompz == 3) {
dlaset_("Full", n, n, &c_b10, &c_b11, &z__[z_offset], ldz, (ftnlen)4);
}
/* Quick return if possible */
/*< >*/
if (*n <= 1) {
return 0;
}
/* Zero out lower triangle of B */
/*< DO 20 JCOL = 1, N - 1 >*/
i__1 = *n - 1;
for (jcol = 1; jcol <= i__1; ++jcol) {
/*< DO 10 JROW = JCOL + 1, N >*/
i__2 = *n;
for (jrow = jcol + 1; jrow <= i__2; ++jrow) {
/*< B( JROW, JCOL ) = ZERO >*/
b[jrow + jcol * b_dim1] = 0.;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< 20 CONTINUE >*/
/* L20: */
}
/* Reduce A and B */
/*< DO 40 JCOL = ILO, IHI - 2 >*/
i__1 = *ihi - 2;
for (jcol = *ilo; jcol <= i__1; ++jcol) {
/*< DO 30 JROW = IHI, JCOL + 2, -1 >*/
i__2 = jcol + 2;
for (jrow = *ihi; jrow >= i__2; --jrow) {
/* Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL) */
/*< TEMP = A( JROW-1, JCOL ) >*/
temp = a[jrow - 1 + jcol * a_dim1];
/*< >*/
dlartg_(&temp, &a[jrow + jcol * a_dim1], &c__, &s, &a[jrow - 1 +
jcol * a_dim1]);
/*< A( JROW, JCOL ) = ZERO >*/
a[jrow + jcol * a_dim1] = 0.;
/*< >*/
i__3 = *n - jcol;
drot_(&i__3, &a[jrow - 1 + (jcol + 1) * a_dim1], lda, &a[jrow + (
jcol + 1) * a_dim1], lda, &c__, &s);
/*< >*/
i__3 = *n + 2 - jrow;
drot_(&i__3, &b[jrow - 1 + (jrow - 1) * b_dim1], ldb, &b[jrow + (
jrow - 1) * b_dim1], ldb, &c__, &s);
/*< >*/
if (ilq) {
drot_(n, &q[(jrow - 1) * q_dim1 + 1], &c__1, &q[jrow * q_dim1
+ 1], &c__1, &c__, &s);
}
/* Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1) */
/*< TEMP = B( JROW, JROW ) >*/
temp = b[jrow + jrow * b_dim1];
/*< >*/
dlartg_(&temp, &b[jrow + (jrow - 1) * b_dim1], &c__, &s, &b[jrow
+ jrow * b_dim1]);
/*< B( JROW, JROW-1 ) = ZERO >*/
b[jrow + (jrow - 1) * b_dim1] = 0.;
/*< CALL DROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, C, S ) >*/
drot_(ihi, &a[jrow * a_dim1 + 1], &c__1, &a[(jrow - 1) * a_dim1 +
1], &c__1, &c__, &s);
/*< >*/
i__3 = jrow - 1;
drot_(&i__3, &b[jrow * b_dim1 + 1], &c__1, &b[(jrow - 1) * b_dim1
+ 1], &c__1, &c__, &s);
/*< >*/
if (ilz) {
drot_(n, &z__[jrow * z_dim1 + 1], &c__1, &z__[(jrow - 1) *
z_dim1 + 1], &c__1, &c__, &s);
}
/*< 30 CONTINUE >*/
/* L30: */
}
/*< 40 CONTINUE >*/
/* L40: */
}
/*< RETURN >*/
return 0;
/* End of DGGHRD */
/*< END >*/
} /* dgghrd_ */
#ifdef __cplusplus
}
#endif
|