File: dgghrd.c

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (412 lines) | stat: -rw-r--r-- 14,015 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/* lapack/double/dgghrd.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static doublereal c_b10 = 0.;
static doublereal c_b11 = 1.;
static integer c__1 = 1;

/*<    >*/
/* Subroutine */ int dgghrd_(char *compq, char *compz, integer *n, integer *
        ilo, integer *ihi, doublereal *a, integer *lda, doublereal *b, 
        integer *ldb, doublereal *q, integer *ldq, doublereal *z__, integer *
        ldz, integer *info, ftnlen compq_len, ftnlen compz_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 
            z_offset, i__1, i__2, i__3;

    /* Local variables */
    doublereal c__, s;
    logical ilq=0, ilz=0;
    integer jcol;
    doublereal temp;
    extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 
            doublereal *, integer *, doublereal *, doublereal *);
    integer jrow;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    extern /* Subroutine */ int dlaset_(char *, integer *, integer *, 
            doublereal *, doublereal *, doublereal *, integer *, ftnlen), 
            dlartg_(doublereal *, doublereal *, doublereal *, doublereal *, 
            doublereal *), xerbla_(char *, integer *, ftnlen);
    integer icompq, icompz;
    (void)compq_len;
    (void)compz_len;

/*  -- LAPACK routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     September 30, 1994 */

/*     .. Scalar Arguments .. */
/*<       CHARACTER          COMPQ, COMPZ >*/
/*<       INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<    >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGGHRD reduces a pair of real matrices (A,B) to generalized upper */
/*  Hessenberg form using orthogonal transformations, where A is a */
/*  general matrix and B is upper triangular:  Q' * A * Z = H and */
/*  Q' * B * Z = T, where H is upper Hessenberg, T is upper triangular, */
/*  and Q and Z are orthogonal, and ' means transpose. */

/*  The orthogonal matrices Q and Z are determined as products of Givens */
/*  rotations.  They may either be formed explicitly, or they may be */
/*  postmultiplied into input matrices Q1 and Z1, so that */

/*       Q1 * A * Z1' = (Q1*Q) * H * (Z1*Z)' */
/*       Q1 * B * Z1' = (Q1*Q) * T * (Z1*Z)' */

/*  Arguments */
/*  ========= */

/*  COMPQ   (input) CHARACTER*1 */
/*          = 'N': do not compute Q; */
/*          = 'I': Q is initialized to the unit matrix, and the */
/*                 orthogonal matrix Q is returned; */
/*          = 'V': Q must contain an orthogonal matrix Q1 on entry, */
/*                 and the product Q1*Q is returned. */

/*  COMPZ   (input) CHARACTER*1 */
/*          = 'N': do not compute Z; */
/*          = 'I': Z is initialized to the unit matrix, and the */
/*                 orthogonal matrix Z is returned; */
/*          = 'V': Z must contain an orthogonal matrix Z1 on entry, */
/*                 and the product Z1*Z is returned. */

/*  N       (input) INTEGER */
/*          The order of the matrices A and B.  N >= 0. */

/*  ILO     (input) INTEGER */
/*  IHI     (input) INTEGER */
/*          It is assumed that A is already upper triangular in rows and */
/*          columns 1:ILO-1 and IHI+1:N.  ILO and IHI are normally set */
/*          by a previous call to DGGBAL; otherwise they should be set */
/*          to 1 and N respectively. */
/*          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/*          On entry, the N-by-N general matrix to be reduced. */
/*          On exit, the upper triangle and the first subdiagonal of A */
/*          are overwritten with the upper Hessenberg matrix H, and the */
/*          rest is set to zero. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
/*          On entry, the N-by-N upper triangular matrix B. */
/*          On exit, the upper triangular matrix T = Q' B Z.  The */
/*          elements below the diagonal are set to zero. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
/*          If COMPQ='N':  Q is not referenced. */
/*          If COMPQ='I':  on entry, Q need not be set, and on exit it */
/*                         contains the orthogonal matrix Q, where Q' */
/*                         is the product of the Givens transformations */
/*                         which are applied to A and B on the left. */
/*          If COMPQ='V':  on entry, Q must contain an orthogonal matrix */
/*                         Q1, and on exit this is overwritten by Q1*Q. */

/*  LDQ     (input) INTEGER */
/*          The leading dimension of the array Q. */
/*          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. */

/*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N) */
/*          If COMPZ='N':  Z is not referenced. */
/*          If COMPZ='I':  on entry, Z need not be set, and on exit it */
/*                         contains the orthogonal matrix Z, which is */
/*                         the product of the Givens transformations */
/*                         which are applied to A and B on the right. */
/*          If COMPZ='V':  on entry, Z must contain an orthogonal matrix */
/*                         Z1, and on exit this is overwritten by Z1*Z. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z. */
/*          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  This routine reduces A to Hessenberg and B to triangular form by */
/*  an unblocked reduction, as described in _Matrix_Computations_, */
/*  by Golub and Van Loan (Johns Hopkins Press.) */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       DOUBLE PRECISION   ONE, ZERO >*/
/*<       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       LOGICAL            ILQ, ILZ >*/
/*<       INTEGER            ICOMPQ, ICOMPZ, JCOL, JROW >*/
/*<       DOUBLE PRECISION   C, S, TEMP >*/
/*     .. */
/*     .. External Functions .. */
/*<       LOGICAL            LSAME >*/
/*<       EXTERNAL           LSAME >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           DLARTG, DLASET, DROT, XERBLA >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          MAX >*/
/*     .. */
/*     .. Executable Statements .. */

/*     Decode COMPQ */

/*<       IF( LSAME( COMPQ, 'N' ) ) THEN >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;

    /* Function Body */
    if (lsame_(compq, "N", (ftnlen)1, (ftnlen)1)) {
/*<          ILQ = .FALSE. >*/
        ilq = FALSE_;
/*<          ICOMPQ = 1 >*/
        icompq = 1;
/*<       ELSE IF( LSAME( COMPQ, 'V' ) ) THEN >*/
    } else if (lsame_(compq, "V", (ftnlen)1, (ftnlen)1)) {
/*<          ILQ = .TRUE. >*/
        ilq = TRUE_;
/*<          ICOMPQ = 2 >*/
        icompq = 2;
/*<       ELSE IF( LSAME( COMPQ, 'I' ) ) THEN >*/
    } else if (lsame_(compq, "I", (ftnlen)1, (ftnlen)1)) {
/*<          ILQ = .TRUE. >*/
        ilq = TRUE_;
/*<          ICOMPQ = 3 >*/
        icompq = 3;
/*<       ELSE >*/
    } else {
/*<          ICOMPQ = 0 >*/
        icompq = 0;
/*<       END IF >*/
    }

/*     Decode COMPZ */

/*<       IF( LSAME( COMPZ, 'N' ) ) THEN >*/
    if (lsame_(compz, "N", (ftnlen)1, (ftnlen)1)) {
/*<          ILZ = .FALSE. >*/
        ilz = FALSE_;
/*<          ICOMPZ = 1 >*/
        icompz = 1;
/*<       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN >*/
    } else if (lsame_(compz, "V", (ftnlen)1, (ftnlen)1)) {
/*<          ILZ = .TRUE. >*/
        ilz = TRUE_;
/*<          ICOMPZ = 2 >*/
        icompz = 2;
/*<       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN >*/
    } else if (lsame_(compz, "I", (ftnlen)1, (ftnlen)1)) {
/*<          ILZ = .TRUE. >*/
        ilz = TRUE_;
/*<          ICOMPZ = 3 >*/
        icompz = 3;
/*<       ELSE >*/
    } else {
/*<          ICOMPZ = 0 >*/
        icompz = 0;
/*<       END IF >*/
    }

/*     Test the input parameters. */

/*<       INFO = 0 >*/
    *info = 0;
/*<       IF( ICOMPQ.LE.0 ) THEN >*/
    if (icompq <= 0) {
/*<          INFO = -1 >*/
        *info = -1;
/*<       ELSE IF( ICOMPZ.LE.0 ) THEN >*/
    } else if (icompz <= 0) {
/*<          INFO = -2 >*/
        *info = -2;
/*<       ELSE IF( N.LT.0 ) THEN >*/
    } else if (*n < 0) {
/*<          INFO = -3 >*/
        *info = -3;
/*<       ELSE IF( ILO.LT.1 ) THEN >*/
    } else if (*ilo < 1) {
/*<          INFO = -4 >*/
        *info = -4;
/*<       ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN >*/
    } else if (*ihi > *n || *ihi < *ilo - 1) {
/*<          INFO = -5 >*/
        *info = -5;
/*<       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN >*/
    } else if (*lda < max(1,*n)) {
/*<          INFO = -7 >*/
        *info = -7;
/*<       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN >*/
    } else if (*ldb < max(1,*n)) {
/*<          INFO = -9 >*/
        *info = -9;
/*<       ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN >*/
    } else if ((ilq && *ldq < *n) || *ldq < 1) {
/*<          INFO = -11 >*/
        *info = -11;
/*<       ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN >*/
    } else if ((ilz && *ldz < *n) || *ldz < 1) {
/*<          INFO = -13 >*/
        *info = -13;
/*<       END IF >*/
    }
/*<       IF( INFO.NE.0 ) THEN >*/
    if (*info != 0) {
/*<          CALL XERBLA( 'DGGHRD', -INFO ) >*/
        i__1 = -(*info);
        xerbla_("DGGHRD", &i__1, (ftnlen)6);
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*     Initialize Q and Z if desired. */

/*<    >*/
    if (icompq == 3) {
        dlaset_("Full", n, n, &c_b10, &c_b11, &q[q_offset], ldq, (ftnlen)4);
    }
/*<    >*/
    if (icompz == 3) {
        dlaset_("Full", n, n, &c_b10, &c_b11, &z__[z_offset], ldz, (ftnlen)4);
    }

/*     Quick return if possible */

/*<    >*/
    if (*n <= 1) {
        return 0;
    }

/*     Zero out lower triangle of B */

/*<       DO 20 JCOL = 1, N - 1 >*/
    i__1 = *n - 1;
    for (jcol = 1; jcol <= i__1; ++jcol) {
/*<          DO 10 JROW = JCOL + 1, N >*/
        i__2 = *n;
        for (jrow = jcol + 1; jrow <= i__2; ++jrow) {
/*<             B( JROW, JCOL ) = ZERO >*/
            b[jrow + jcol * b_dim1] = 0.;
/*<    10    CONTINUE >*/
/* L10: */
        }
/*<    20 CONTINUE >*/
/* L20: */
    }

/*     Reduce A and B */

/*<       DO 40 JCOL = ILO, IHI - 2 >*/
    i__1 = *ihi - 2;
    for (jcol = *ilo; jcol <= i__1; ++jcol) {

/*<          DO 30 JROW = IHI, JCOL + 2, -1 >*/
        i__2 = jcol + 2;
        for (jrow = *ihi; jrow >= i__2; --jrow) {

/*           Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL) */

/*<             TEMP = A( JROW-1, JCOL ) >*/
            temp = a[jrow - 1 + jcol * a_dim1];
/*<    >*/
            dlartg_(&temp, &a[jrow + jcol * a_dim1], &c__, &s, &a[jrow - 1 + 
                    jcol * a_dim1]);
/*<             A( JROW, JCOL ) = ZERO >*/
            a[jrow + jcol * a_dim1] = 0.;
/*<    >*/
            i__3 = *n - jcol;
            drot_(&i__3, &a[jrow - 1 + (jcol + 1) * a_dim1], lda, &a[jrow + (
                    jcol + 1) * a_dim1], lda, &c__, &s);
/*<    >*/
            i__3 = *n + 2 - jrow;
            drot_(&i__3, &b[jrow - 1 + (jrow - 1) * b_dim1], ldb, &b[jrow + (
                    jrow - 1) * b_dim1], ldb, &c__, &s);
/*<    >*/
            if (ilq) {
                drot_(n, &q[(jrow - 1) * q_dim1 + 1], &c__1, &q[jrow * q_dim1 
                        + 1], &c__1, &c__, &s);
            }

/*           Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1) */

/*<             TEMP = B( JROW, JROW ) >*/
            temp = b[jrow + jrow * b_dim1];
/*<    >*/
            dlartg_(&temp, &b[jrow + (jrow - 1) * b_dim1], &c__, &s, &b[jrow 
                    + jrow * b_dim1]);
/*<             B( JROW, JROW-1 ) = ZERO >*/
            b[jrow + (jrow - 1) * b_dim1] = 0.;
/*<             CALL DROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, C, S ) >*/
            drot_(ihi, &a[jrow * a_dim1 + 1], &c__1, &a[(jrow - 1) * a_dim1 + 
                    1], &c__1, &c__, &s);
/*<    >*/
            i__3 = jrow - 1;
            drot_(&i__3, &b[jrow * b_dim1 + 1], &c__1, &b[(jrow - 1) * b_dim1 
                    + 1], &c__1, &c__, &s);
/*<    >*/
            if (ilz) {
                drot_(n, &z__[jrow * z_dim1 + 1], &c__1, &z__[(jrow - 1) * 
                        z_dim1 + 1], &c__1, &c__, &s);
            }
/*<    30    CONTINUE >*/
/* L30: */
        }
/*<    40 CONTINUE >*/
/* L40: */
    }

/*<       RETURN >*/
    return 0;

/*     End of DGGHRD */

/*<       END >*/
} /* dgghrd_ */

#ifdef __cplusplus
        }
#endif