1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
/* lapack/double/dlartg.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Initialization function just calls the function once so that its
runtime-initialized constants are initialized. After the first
call it is safe to call the function from multiple threads at
once. */
void v3p_netlib_dlartg_init()
{
doublereal f=0, g=0, cs=0, sn=0, r=0;
dlartg_(&f, &g, &cs, &sn, &r);
}
/*< SUBROUTINE DLARTG( F, G, CS, SN, R ) >*/
/* Subroutine */ int dlartg_(doublereal *f, doublereal *g, doublereal *cs,
doublereal *sn, doublereal *r__)
{
/* Initialized data */
static logical first = TRUE_; /* runtime-initialized constant */
/* System generated locals */
integer i__1;
doublereal d__1, d__2;
/* Builtin functions */
double log(doublereal), pow_di(doublereal *, integer *), sqrt(doublereal);
/* Local variables */
integer i__;
doublereal f1, g1, eps, scale;
integer count;
static doublereal safmn2, safmx2; /* runtime-initialized constant */
extern doublereal dlamch_(char *, ftnlen);
static doublereal safmin; /* runtime-initialized constant */
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* September 30, 1994 */
/* .. Scalar Arguments .. */
/*< DOUBLE PRECISION CS, F, G, R, SN >*/
/* .. */
/* Purpose */
/* ======= */
/* DLARTG generate a plane rotation so that */
/* [ CS SN ] . [ F ] = [ R ] where CS**2 + SN**2 = 1. */
/* [ -SN CS ] [ G ] [ 0 ] */
/* This is a slower, more accurate version of the BLAS1 routine DROTG, */
/* with the following other differences: */
/* F and G are unchanged on return. */
/* If G=0, then CS=1 and SN=0. */
/* If F=0 and (G .ne. 0), then CS=0 and SN=1 without doing any */
/* floating point operations (saves work in DBDSQR when */
/* there are zeros on the diagonal). */
/* If F exceeds G in magnitude, CS will be positive. */
/* Arguments */
/* ========= */
/* F (input) DOUBLE PRECISION */
/* The first component of vector to be rotated. */
/* G (input) DOUBLE PRECISION */
/* The second component of vector to be rotated. */
/* CS (output) DOUBLE PRECISION */
/* The cosine of the rotation. */
/* SN (output) DOUBLE PRECISION */
/* The sine of the rotation. */
/* R (output) DOUBLE PRECISION */
/* The nonzero component of the rotated vector. */
/* ===================================================================== */
/* .. Parameters .. */
/*< DOUBLE PRECISION ZERO >*/
/*< PARAMETER ( ZERO = 0.0D0 ) >*/
/*< DOUBLE PRECISION ONE >*/
/*< PARAMETER ( ONE = 1.0D0 ) >*/
/*< DOUBLE PRECISION TWO >*/
/*< PARAMETER ( TWO = 2.0D0 ) >*/
/* .. */
/* .. Local Scalars .. */
/*< LOGICAL FIRST >*/
/*< INTEGER COUNT, I >*/
/*< DOUBLE PRECISION EPS, F1, G1, SAFMIN, SAFMN2, SAFMX2, SCALE >*/
/* .. */
/* .. External Functions .. */
/*< DOUBLE PRECISION DLAMCH >*/
/*< EXTERNAL DLAMCH >*/
/* .. */
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, INT, LOG, MAX, SQRT >*/
/* .. */
/* .. Save statement .. */
/*< SAVE FIRST, SAFMX2, SAFMIN, SAFMN2 >*/
/* .. */
/* .. Data statements .. */
/*< DATA FIRST / .TRUE. / >*/
/* .. */
/* .. Executable Statements .. */
/*< IF( FIRST ) THEN >*/
if (first) {
/*< FIRST = .FALSE. >*/
first = FALSE_;
/*< SAFMIN = DLAMCH( 'S' ) >*/
safmin = dlamch_("S", (ftnlen)1);
/*< EPS = DLAMCH( 'E' ) >*/
eps = dlamch_("E", (ftnlen)1);
/*< >*/
d__1 = dlamch_("B", (ftnlen)1);
i__1 = (integer) (log(safmin / eps) / log(dlamch_("B", (ftnlen)1)) /
2.);
safmn2 = pow_di(&d__1, &i__1);
/*< SAFMX2 = ONE / SAFMN2 >*/
safmx2 = 1. / safmn2;
/*< END IF >*/
}
/*< IF( G.EQ.ZERO ) THEN >*/
if (*g == 0.) {
/*< CS = ONE >*/
*cs = 1.;
/*< SN = ZERO >*/
*sn = 0.;
/*< R = F >*/
*r__ = *f;
/*< ELSE IF( F.EQ.ZERO ) THEN >*/
} else if (*f == 0.) {
/*< CS = ZERO >*/
*cs = 0.;
/*< SN = ONE >*/
*sn = 1.;
/*< R = G >*/
*r__ = *g;
/*< ELSE >*/
} else {
/*< F1 = F >*/
f1 = *f;
/*< G1 = G >*/
g1 = *g;
/*< SCALE = MAX( ABS( F1 ), ABS( G1 ) ) >*/
/* Computing MAX */
d__1 = abs(f1), d__2 = abs(g1);
scale = max(d__1,d__2);
/*< IF( SCALE.GE.SAFMX2 ) THEN >*/
if (scale >= safmx2) {
/*< COUNT = 0 >*/
count = 0;
/*< 10 CONTINUE >*/
L10:
/*< COUNT = COUNT + 1 >*/
++count;
/*< F1 = F1*SAFMN2 >*/
f1 *= safmn2;
/*< G1 = G1*SAFMN2 >*/
g1 *= safmn2;
/*< SCALE = MAX( ABS( F1 ), ABS( G1 ) ) >*/
/* Computing MAX */
d__1 = abs(f1), d__2 = abs(g1);
scale = max(d__1,d__2);
/*< >*/
if (scale >= safmx2) {
goto L10;
}
/*< R = SQRT( F1**2+G1**2 ) >*/
/* Computing 2nd power */
d__1 = f1;
/* Computing 2nd power */
d__2 = g1;
*r__ = sqrt(d__1 * d__1 + d__2 * d__2);
/*< CS = F1 / R >*/
*cs = f1 / *r__;
/*< SN = G1 / R >*/
*sn = g1 / *r__;
/*< DO 20 I = 1, COUNT >*/
i__1 = count;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< R = R*SAFMX2 >*/
*r__ *= safmx2;
/*< 20 CONTINUE >*/
/* L20: */
}
/*< ELSE IF( SCALE.LE.SAFMN2 ) THEN >*/
} else if (scale <= safmn2) {
/*< COUNT = 0 >*/
count = 0;
/*< 30 CONTINUE >*/
L30:
/*< COUNT = COUNT + 1 >*/
++count;
/*< F1 = F1*SAFMX2 >*/
f1 *= safmx2;
/*< G1 = G1*SAFMX2 >*/
g1 *= safmx2;
/*< SCALE = MAX( ABS( F1 ), ABS( G1 ) ) >*/
/* Computing MAX */
d__1 = abs(f1), d__2 = abs(g1);
scale = max(d__1,d__2);
/*< >*/
if (scale <= safmn2) {
goto L30;
}
/*< R = SQRT( F1**2+G1**2 ) >*/
/* Computing 2nd power */
d__1 = f1;
/* Computing 2nd power */
d__2 = g1;
*r__ = sqrt(d__1 * d__1 + d__2 * d__2);
/*< CS = F1 / R >*/
*cs = f1 / *r__;
/*< SN = G1 / R >*/
*sn = g1 / *r__;
/*< DO 40 I = 1, COUNT >*/
i__1 = count;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< R = R*SAFMN2 >*/
*r__ *= safmn2;
/*< 40 CONTINUE >*/
/* L40: */
}
/*< ELSE >*/
} else {
/*< R = SQRT( F1**2+G1**2 ) >*/
/* Computing 2nd power */
d__1 = f1;
/* Computing 2nd power */
d__2 = g1;
*r__ = sqrt(d__1 * d__1 + d__2 * d__2);
/*< CS = F1 / R >*/
*cs = f1 / *r__;
/*< SN = G1 / R >*/
*sn = g1 / *r__;
/*< END IF >*/
}
/*< IF( ABS( F ).GT.ABS( G ) .AND. CS.LT.ZERO ) THEN >*/
if (abs(*f) > abs(*g) && *cs < 0.) {
/*< CS = -CS >*/
*cs = -(*cs);
/*< SN = -SN >*/
*sn = -(*sn);
/*< R = -R >*/
*r__ = -(*r__);
/*< END IF >*/
}
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of DLARTG */
/*< END >*/
} /* dlartg_ */
#ifdef __cplusplus
}
#endif
|