1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/* lapack/double/dlaswp.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< SUBROUTINE DLASWP( N, A, LDA, K1, K2, IPIV, INCX ) >*/
/* Subroutine */ int dlaswp_(integer *n, doublereal *a, integer *lda, integer
*k1, integer *k2, integer *ipiv, integer *incx)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
/* Local variables */
integer i__, j, k, i1, i2, n32, ip, ix, ix0, inc;
doublereal temp;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* .. Scalar Arguments .. */
/*< INTEGER INCX, K1, K2, LDA, N >*/
/* .. */
/* .. Array Arguments .. */
/*< INTEGER IPIV( * ) >*/
/*< DOUBLE PRECISION A( LDA, * ) >*/
/* .. */
/* Purpose */
/* ======= */
/* DLASWP performs a series of row interchanges on the matrix A. */
/* One row interchange is initiated for each of rows K1 through K2 of A. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The number of columns of the matrix A. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the matrix of column dimension N to which the row */
/* interchanges will be applied. */
/* On exit, the permuted matrix. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. */
/* K1 (input) INTEGER */
/* The first element of IPIV for which a row interchange will */
/* be done. */
/* K2 (input) INTEGER */
/* The last element of IPIV for which a row interchange will */
/* be done. */
/* IPIV (input) INTEGER array, dimension (M*abs(INCX)) */
/* The vector of pivot indices. Only the elements in positions */
/* K1 through K2 of IPIV are accessed. */
/* IPIV(K) = L implies rows K and L are to be interchanged. */
/* INCX (input) INTEGER */
/* The increment between successive values of IPIV. If IPIV */
/* is negative, the pivots are applied in reverse order. */
/* Further Details */
/* =============== */
/* Modified by */
/* R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
/* ===================================================================== */
/* .. Local Scalars .. */
/*< INTEGER I, I1, I2, INC, IP, IX, IX0, J, K, N32 >*/
/*< DOUBLE PRECISION TEMP >*/
/* .. */
/* .. Executable Statements .. */
/* Interchange row I with row IPIV(I) for each of rows K1 through K2. */
/*< IF( INCX.GT.0 ) THEN >*/
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--ipiv;
/* Function Body */
if (*incx > 0) {
/*< IX0 = K1 >*/
ix0 = *k1;
/*< I1 = K1 >*/
i1 = *k1;
/*< I2 = K2 >*/
i2 = *k2;
/*< INC = 1 >*/
inc = 1;
/*< ELSE IF( INCX.LT.0 ) THEN >*/
} else if (*incx < 0) {
/*< IX0 = 1 + ( 1-K2 )*INCX >*/
ix0 = (1 - *k2) * *incx + 1;
/*< I1 = K2 >*/
i1 = *k2;
/*< I2 = K1 >*/
i2 = *k1;
/*< INC = -1 >*/
inc = -1;
/*< ELSE >*/
} else {
/*< RETURN >*/
return 0;
/*< END IF >*/
}
/*< N32 = ( N / 32 )*32 >*/
n32 = *n / 32 << 5;
/*< IF( N32.NE.0 ) THEN >*/
if (n32 != 0) {
/*< DO 30 J = 1, N32, 32 >*/
i__1 = n32;
for (j = 1; j <= i__1; j += 32) {
/*< IX = IX0 >*/
ix = ix0;
/*< DO 20 I = I1, I2, INC >*/
i__2 = i2;
i__3 = inc;
for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3)
{
/*< IP = IPIV( IX ) >*/
ip = ipiv[ix];
/*< IF( IP.NE.I ) THEN >*/
if (ip != i__) {
/*< DO 10 K = J, J + 31 >*/
i__4 = j + 31;
for (k = j; k <= i__4; ++k) {
/*< TEMP = A( I, K ) >*/
temp = a[i__ + k * a_dim1];
/*< A( I, K ) = A( IP, K ) >*/
a[i__ + k * a_dim1] = a[ip + k * a_dim1];
/*< A( IP, K ) = TEMP >*/
a[ip + k * a_dim1] = temp;
/*< 10 CONTINUE >*/
/* L10: */
}
/*< END IF >*/
}
/*< IX = IX + INCX >*/
ix += *incx;
/*< 20 CONTINUE >*/
/* L20: */
}
/*< 30 CONTINUE >*/
/* L30: */
}
/*< END IF >*/
}
/*< IF( N32.NE.N ) THEN >*/
if (n32 != *n) {
/*< N32 = N32 + 1 >*/
++n32;
/*< IX = IX0 >*/
ix = ix0;
/*< DO 50 I = I1, I2, INC >*/
i__1 = i2;
i__3 = inc;
for (i__ = i1; i__3 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__3) {
/*< IP = IPIV( IX ) >*/
ip = ipiv[ix];
/*< IF( IP.NE.I ) THEN >*/
if (ip != i__) {
/*< DO 40 K = N32, N >*/
i__2 = *n;
for (k = n32; k <= i__2; ++k) {
/*< TEMP = A( I, K ) >*/
temp = a[i__ + k * a_dim1];
/*< A( I, K ) = A( IP, K ) >*/
a[i__ + k * a_dim1] = a[ip + k * a_dim1];
/*< A( IP, K ) = TEMP >*/
a[ip + k * a_dim1] = temp;
/*< 40 CONTINUE >*/
/* L40: */
}
/*< END IF >*/
}
/*< IX = IX + INCX >*/
ix += *incx;
/*< 50 CONTINUE >*/
/* L50: */
}
/*< END IF >*/
}
/*< RETURN >*/
return 0;
/* End of DLASWP */
/*< END >*/
} /* dlaswp_ */
#ifdef __cplusplus
}
#endif
|