File: dlaswp.c

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (218 lines) | stat: -rw-r--r-- 6,560 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/* lapack/double/dlaswp.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/*<       SUBROUTINE DLASWP( N, A, LDA, K1, K2, IPIV, INCX ) >*/
/* Subroutine */ int dlaswp_(integer *n, doublereal *a, integer *lda, integer 
        *k1, integer *k2, integer *ipiv, integer *incx)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;

    /* Local variables */
    integer i__, j, k, i1, i2, n32, ip, ix, ix0, inc;
    doublereal temp;


/*  -- LAPACK auxiliary routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*<       INTEGER            INCX, K1, K2, LDA, N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       INTEGER            IPIV( * ) >*/
/*<       DOUBLE PRECISION   A( LDA, * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLASWP performs a series of row interchanges on the matrix A. */
/*  One row interchange is initiated for each of rows K1 through K2 of A. */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the matrix of column dimension N to which the row */
/*          interchanges will be applied. */
/*          On exit, the permuted matrix. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. */

/*  K1      (input) INTEGER */
/*          The first element of IPIV for which a row interchange will */
/*          be done. */

/*  K2      (input) INTEGER */
/*          The last element of IPIV for which a row interchange will */
/*          be done. */

/*  IPIV    (input) INTEGER array, dimension (M*abs(INCX)) */
/*          The vector of pivot indices.  Only the elements in positions */
/*          K1 through K2 of IPIV are accessed. */
/*          IPIV(K) = L implies rows K and L are to be interchanged. */

/*  INCX    (input) INTEGER */
/*          The increment between successive values of IPIV.  If IPIV */
/*          is negative, the pivots are applied in reverse order. */

/*  Further Details */
/*  =============== */

/*  Modified by */
/*   R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA */

/* ===================================================================== */

/*     .. Local Scalars .. */
/*<       INTEGER            I, I1, I2, INC, IP, IX, IX0, J, K, N32 >*/
/*<       DOUBLE PRECISION   TEMP >*/
/*     .. */
/*     .. Executable Statements .. */

/*     Interchange row I with row IPIV(I) for each of rows K1 through K2. */

/*<       IF( INCX.GT.0 ) THEN >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;

    /* Function Body */
    if (*incx > 0) {
/*<          IX0 = K1 >*/
        ix0 = *k1;
/*<          I1 = K1 >*/
        i1 = *k1;
/*<          I2 = K2 >*/
        i2 = *k2;
/*<          INC = 1 >*/
        inc = 1;
/*<       ELSE IF( INCX.LT.0 ) THEN >*/
    } else if (*incx < 0) {
/*<          IX0 = 1 + ( 1-K2 )*INCX >*/
        ix0 = (1 - *k2) * *incx + 1;
/*<          I1 = K2 >*/
        i1 = *k2;
/*<          I2 = K1 >*/
        i2 = *k1;
/*<          INC = -1 >*/
        inc = -1;
/*<       ELSE >*/
    } else {
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*<       N32 = ( N / 32 )*32 >*/
    n32 = *n / 32 << 5;
/*<       IF( N32.NE.0 ) THEN >*/
    if (n32 != 0) {
/*<          DO 30 J = 1, N32, 32 >*/
        i__1 = n32;
        for (j = 1; j <= i__1; j += 32) {
/*<             IX = IX0 >*/
            ix = ix0;
/*<             DO 20 I = I1, I2, INC >*/
            i__2 = i2;
            i__3 = inc;
            for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3) 
                    {
/*<                IP = IPIV( IX ) >*/
                ip = ipiv[ix];
/*<                IF( IP.NE.I ) THEN >*/
                if (ip != i__) {
/*<                   DO 10 K = J, J + 31 >*/
                    i__4 = j + 31;
                    for (k = j; k <= i__4; ++k) {
/*<                      TEMP = A( I, K ) >*/
                        temp = a[i__ + k * a_dim1];
/*<                      A( I, K ) = A( IP, K ) >*/
                        a[i__ + k * a_dim1] = a[ip + k * a_dim1];
/*<                      A( IP, K ) = TEMP >*/
                        a[ip + k * a_dim1] = temp;
/*<    10             CONTINUE >*/
/* L10: */
                    }
/*<                END IF >*/
                }
/*<                IX = IX + INCX >*/
                ix += *incx;
/*<    20       CONTINUE >*/
/* L20: */
            }
/*<    30    CONTINUE >*/
/* L30: */
        }
/*<       END IF >*/
    }
/*<       IF( N32.NE.N ) THEN >*/
    if (n32 != *n) {
/*<          N32 = N32 + 1 >*/
        ++n32;
/*<          IX = IX0 >*/
        ix = ix0;
/*<          DO 50 I = I1, I2, INC >*/
        i__1 = i2;
        i__3 = inc;
        for (i__ = i1; i__3 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__3) {
/*<             IP = IPIV( IX ) >*/
            ip = ipiv[ix];
/*<             IF( IP.NE.I ) THEN >*/
            if (ip != i__) {
/*<                DO 40 K = N32, N >*/
                i__2 = *n;
                for (k = n32; k <= i__2; ++k) {
/*<                   TEMP = A( I, K ) >*/
                    temp = a[i__ + k * a_dim1];
/*<                   A( I, K ) = A( IP, K ) >*/
                    a[i__ + k * a_dim1] = a[ip + k * a_dim1];
/*<                   A( IP, K ) = TEMP >*/
                    a[ip + k * a_dim1] = temp;
/*<    40          CONTINUE >*/
/* L40: */
                }
/*<             END IF >*/
            }
/*<             IX = IX + INCX >*/
            ix += *incx;
/*<    50    CONTINUE >*/
/* L50: */
        }
/*<       END IF >*/
    }

/*<       RETURN >*/
    return 0;

/*     End of DLASWP */

/*<       END >*/
} /* dlaswp_ */

#ifdef __cplusplus
        }
#endif