File: dorgr2.c

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (225 lines) | stat: -rw-r--r-- 6,662 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/* lapack/double/dorgr2.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/*<       SUBROUTINE DORGR2( M, N, K, A, LDA, TAU, WORK, INFO ) >*/
/* Subroutine */ int dorgr2_(integer *m, integer *n, integer *k, doublereal *
        a, integer *lda, doublereal *tau, doublereal *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    doublereal d__1;

    /* Local variables */
    integer i__, j, l, ii;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
            integer *), dlarf_(char *, integer *, integer *, doublereal *, 
            integer *, doublereal *, doublereal *, integer *, doublereal *, 
            ftnlen), xerbla_(char *, integer *, ftnlen);


/*  -- LAPACK routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     February 29, 1992 */

/*     .. Scalar Arguments .. */
/*<       INTEGER            INFO, K, LDA, M, N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  DORGR2 generates an m by n real matrix Q with orthonormal rows, */
/*  which is defined as the last m rows of a product of k elementary */
/*  reflectors of order n */

/*        Q  =  H(1) H(2) . . . H(k) */

/*  as returned by DGERQF. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix Q. M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix Q. N >= M. */

/*  K       (input) INTEGER */
/*          The number of elementary reflectors whose product defines the */
/*          matrix Q. M >= K >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the (m-k+i)-th row must contain the vector which */
/*          defines the elementary reflector H(i), for i = 1,2,...,k, as */
/*          returned by DGERQF in the last k rows of its array argument */
/*          A. */
/*          On exit, the m by n matrix Q. */

/*  LDA     (input) INTEGER */
/*          The first dimension of the array A. LDA >= max(1,M). */

/*  TAU     (input) DOUBLE PRECISION array, dimension (K) */
/*          TAU(i) must contain the scalar factor of the elementary */
/*          reflector H(i), as returned by DGERQF. */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (M) */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument has an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       DOUBLE PRECISION   ONE, ZERO >*/
/*<       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       INTEGER            I, II, J, L >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           DLARF, DSCAL, XERBLA >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          MAX >*/
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

/*<       INFO = 0 >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
/*<       IF( M.LT.0 ) THEN >*/
    if (*m < 0) {
/*<          INFO = -1 >*/
        *info = -1;
/*<       ELSE IF( N.LT.M ) THEN >*/
    } else if (*n < *m) {
/*<          INFO = -2 >*/
        *info = -2;
/*<       ELSE IF( K.LT.0 .OR. K.GT.M ) THEN >*/
    } else if (*k < 0 || *k > *m) {
/*<          INFO = -3 >*/
        *info = -3;
/*<       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN >*/
    } else if (*lda < max(1,*m)) {
/*<          INFO = -5 >*/
        *info = -5;
/*<       END IF >*/
    }
/*<       IF( INFO.NE.0 ) THEN >*/
    if (*info != 0) {
/*<          CALL XERBLA( 'DORGR2', -INFO ) >*/
        i__1 = -(*info);
        xerbla_("DORGR2", &i__1, (ftnlen)6);
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*     Quick return if possible */

/*<    >*/
    if (*m <= 0) {
        return 0;
    }

/*<       IF( K.LT.M ) THEN >*/
    if (*k < *m) {

/*        Initialise rows 1:m-k to rows of the unit matrix */

/*<          DO 20 J = 1, N >*/
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
/*<             DO 10 L = 1, M - K >*/
            i__2 = *m - *k;
            for (l = 1; l <= i__2; ++l) {
/*<                A( L, J ) = ZERO >*/
                a[l + j * a_dim1] = 0.;
/*<    10       CONTINUE >*/
/* L10: */
            }
/*<    >*/
            if (j > *n - *m && j <= *n - *k) {
                a[*m - *n + j + j * a_dim1] = 1.;
            }
/*<    20    CONTINUE >*/
/* L20: */
        }
/*<       END IF >*/
    }

/*<       DO 40 I = 1, K >*/
    i__1 = *k;
    for (i__ = 1; i__ <= i__1; ++i__) {
/*<          II = M - K + I >*/
        ii = *m - *k + i__;

/*        Apply H(i) to A(1:m-k+i,1:n-k+i) from the right */

/*<          A( II, N-M+II ) = ONE >*/
        a[ii + (*n - *m + ii) * a_dim1] = 1.;
/*<    >*/
        i__2 = ii - 1;
        i__3 = *n - *m + ii;
        dlarf_("Right", &i__2, &i__3, &a[ii + a_dim1], lda, &tau[i__], &a[
                a_offset], lda, &work[1], (ftnlen)5);
/*<          CALL DSCAL( N-M+II-1, -TAU( I ), A( II, 1 ), LDA ) >*/
        i__2 = *n - *m + ii - 1;
        d__1 = -tau[i__];
        dscal_(&i__2, &d__1, &a[ii + a_dim1], lda);
/*<          A( II, N-M+II ) = ONE - TAU( I ) >*/
        a[ii + (*n - *m + ii) * a_dim1] = 1. - tau[i__];

/*        Set A(m-k+i,n-k+i+1:n) to zero */

/*<          DO 30 L = N - M + II + 1, N >*/
        i__2 = *n;
        for (l = *n - *m + ii + 1; l <= i__2; ++l) {
/*<             A( II, L ) = ZERO >*/
            a[ii + l * a_dim1] = 0.;
/*<    30    CONTINUE >*/
/* L30: */
        }
/*<    40 CONTINUE >*/
/* L40: */
    }
/*<       RETURN >*/
    return 0;

/*     End of DORGR2 */

/*<       END >*/
} /* dorgr2_ */

#ifdef __cplusplus
        }
#endif