File: sgeqpf.c

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (393 lines) | stat: -rw-r--r-- 13,274 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/* lapack/single/sgeqpf.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;

/*<       SUBROUTINE SGEQPF( M, N, A, LDA, JPVT, TAU, WORK, INFO ) >*/
/* Subroutine */ int sgeqpf_(integer *m, integer *n, real *a, integer *lda, 
        integer *jpvt, real *tau, real *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    real r__1, r__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, ma, mn;
    real aii;
    integer pvt;
    real temp, temp2;
    extern doublereal snrm2_(integer *, real *, integer *);
    extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *, 
            integer *, real *, real *, integer *, real *, ftnlen);
    integer itemp;
    extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, 
            integer *), sgeqr2_(integer *, integer *, real *, integer *, real 
            *, real *, integer *), sorm2r_(char *, char *, integer *, integer 
            *, integer *, real *, integer *, real *, real *, integer *, real *
            , integer *, ftnlen, ftnlen), xerbla_(char *, integer *, ftnlen), 
            slarfg_(integer *, real *, real *, integer *, real *);
    extern integer isamax_(integer *, real *, integer *);


/*  -- LAPACK test routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     March 31, 1993 */

/*     .. Scalar Arguments .. */
/*<       INTEGER            INFO, LDA, M, N >*/
/*     .. */
/*     .. Array Arguments .. */
/*<       INTEGER            JPVT( * ) >*/
/*<       REAL               A( LDA, * ), TAU( * ), WORK( * ) >*/
/*     .. */

/*  Purpose */
/*  ======= */

/*  This routine is deprecated and has been replaced by routine SGEQP3. */

/*  SGEQPF computes a QR factorization with column pivoting of a */
/*  real M-by-N matrix A: A*P = Q*R. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A. M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A. N >= 0 */

/*  A       (input/output) REAL array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, the upper triangle of the array contains the */
/*          min(M,N)-by-N upper triangular matrix R; the elements */
/*          below the diagonal, together with the array TAU, */
/*          represent the orthogonal matrix Q as a product of */
/*          min(m,n) elementary reflectors. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= max(1,M). */

/*  JPVT    (input/output) INTEGER array, dimension (N) */
/*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
/*          to the front of A*P (a leading column); if JPVT(i) = 0, */
/*          the i-th column of A is a free column. */
/*          On exit, if JPVT(i) = k, then the i-th column of A*P */
/*          was the k-th column of A. */

/*  TAU     (output) REAL array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors. */

/*  WORK    (workspace) REAL array, dimension (3*N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(1) H(2) . . . H(n) */

/*  Each H(i) has the form */

/*     H = I - tau * v * v' */

/*  where tau is a real scalar, and v is a real vector with */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). */

/*  The matrix P is represented in jpvt as follows: If */
/*     jpvt(j) = i */
/*  then the jth column of P is the ith canonical unit vector. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*<       REAL               ZERO, ONE >*/
/*<       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 ) >*/
/*     .. */
/*     .. Local Scalars .. */
/*<       INTEGER            I, ITEMP, J, MA, MN, PVT >*/
/*<       REAL               AII, TEMP, TEMP2 >*/
/*     .. */
/*     .. External Subroutines .. */
/*<       EXTERNAL           SGEQR2, SLARF, SLARFG, SORM2R, SSWAP, XERBLA >*/
/*     .. */
/*     .. Intrinsic Functions .. */
/*<       INTRINSIC          ABS, MAX, MIN, SQRT >*/
/*     .. */
/*     .. External Functions .. */
/*<       INTEGER            ISAMAX >*/
/*<       REAL               SNRM2 >*/
/*<       EXTERNAL           ISAMAX, SNRM2 >*/
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

/*<       INFO = 0 >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --jpvt;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
/*<       IF( M.LT.0 ) THEN >*/
    if (*m < 0) {
/*<          INFO = -1 >*/
        *info = -1;
/*<       ELSE IF( N.LT.0 ) THEN >*/
    } else if (*n < 0) {
/*<          INFO = -2 >*/
        *info = -2;
/*<       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN >*/
    } else if (*lda < max(1,*m)) {
/*<          INFO = -4 >*/
        *info = -4;
/*<       END IF >*/
    }
/*<       IF( INFO.NE.0 ) THEN >*/
    if (*info != 0) {
/*<          CALL XERBLA( 'SGEQPF', -INFO ) >*/
        i__1 = -(*info);
        xerbla_("SGEQPF", &i__1, (ftnlen)6);
/*<          RETURN >*/
        return 0;
/*<       END IF >*/
    }

/*<       MN = MIN( M, N ) >*/
    mn = min(*m,*n);

/*     Move initial columns up front */

/*<       ITEMP = 1 >*/
    itemp = 1;
/*<       DO 10 I = 1, N >*/
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
/*<          IF( JPVT( I ).NE.0 ) THEN >*/
        if (jpvt[i__] != 0) {
/*<             IF( I.NE.ITEMP ) THEN >*/
            if (i__ != itemp) {
/*<                CALL SSWAP( M, A( 1, I ), 1, A( 1, ITEMP ), 1 ) >*/
                sswap_(m, &a[i__ * a_dim1 + 1], &c__1, &a[itemp * a_dim1 + 1],
                         &c__1);
/*<                JPVT( I ) = JPVT( ITEMP ) >*/
                jpvt[i__] = jpvt[itemp];
/*<                JPVT( ITEMP ) = I >*/
                jpvt[itemp] = i__;
/*<             ELSE >*/
            } else {
/*<                JPVT( I ) = I >*/
                jpvt[i__] = i__;
/*<             END IF >*/
            }
/*<             ITEMP = ITEMP + 1 >*/
            ++itemp;
/*<          ELSE >*/
        } else {
/*<             JPVT( I ) = I >*/
            jpvt[i__] = i__;
/*<          END IF >*/
        }
/*<    10 CONTINUE >*/
/* L10: */
    }
/*<       ITEMP = ITEMP - 1 >*/
    --itemp;

/*     Compute the QR factorization and update remaining columns */

/*<       IF( ITEMP.GT.0 ) THEN >*/
    if (itemp > 0) {
/*<          MA = MIN( ITEMP, M ) >*/
        ma = min(itemp,*m);
/*<          CALL SGEQR2( M, MA, A, LDA, TAU, WORK, INFO ) >*/
        sgeqr2_(m, &ma, &a[a_offset], lda, &tau[1], &work[1], info);
/*<          IF( MA.LT.N ) THEN >*/
        if (ma < *n) {
/*<    >*/
            i__1 = *n - ma;
            sorm2r_("Left", "Transpose", m, &i__1, &ma, &a[a_offset], lda, &
                    tau[1], &a[(ma + 1) * a_dim1 + 1], lda, &work[1], info, (
                    ftnlen)4, (ftnlen)9);
/*<          END IF >*/
        }
/*<       END IF >*/
    }

/*<       IF( ITEMP.LT.MN ) THEN >*/
    if (itemp < mn) {

/*        Initialize partial column norms. The first n elements of */
/*        work store the exact column norms. */

/*<          DO 20 I = ITEMP + 1, N >*/
        i__1 = *n;
        for (i__ = itemp + 1; i__ <= i__1; ++i__) {
/*<             WORK( I ) = SNRM2( M-ITEMP, A( ITEMP+1, I ), 1 ) >*/
            i__2 = *m - itemp;
            work[i__] = snrm2_(&i__2, &a[itemp + 1 + i__ * a_dim1], &c__1);
/*<             WORK( N+I ) = WORK( I ) >*/
            work[*n + i__] = work[i__];
/*<    20    CONTINUE >*/
/* L20: */
        }

/*        Compute factorization */

/*<          DO 40 I = ITEMP + 1, MN >*/
        i__1 = mn;
        for (i__ = itemp + 1; i__ <= i__1; ++i__) {

/*           Determine ith pivot column and swap if necessary */

/*<             PVT = ( I-1 ) + ISAMAX( N-I+1, WORK( I ), 1 ) >*/
            i__2 = *n - i__ + 1;
            pvt = i__ - 1 + isamax_(&i__2, &work[i__], &c__1);

/*<             IF( PVT.NE.I ) THEN >*/
            if (pvt != i__) {
/*<                CALL SSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 ) >*/
                sswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], &
                        c__1);
/*<                ITEMP = JPVT( PVT ) >*/
                itemp = jpvt[pvt];
/*<                JPVT( PVT ) = JPVT( I ) >*/
                jpvt[pvt] = jpvt[i__];
/*<                JPVT( I ) = ITEMP >*/
                jpvt[i__] = itemp;
/*<                WORK( PVT ) = WORK( I ) >*/
                work[pvt] = work[i__];
/*<                WORK( N+PVT ) = WORK( N+I ) >*/
                work[*n + pvt] = work[*n + i__];
/*<             END IF >*/
            }

/*           Generate elementary reflector H(i) */

/*<             IF( I.LT.M ) THEN >*/
            if (i__ < *m) {
/*<                CALL SLARFG( M-I+1, A( I, I ), A( I+1, I ), 1, TAU( I ) ) >*/
                i__2 = *m - i__ + 1;
                slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + 1 + i__ * 
                        a_dim1], &c__1, &tau[i__]);
/*<             ELSE >*/
            } else {
/*<                CALL SLARFG( 1, A( M, M ), A( M, M ), 1, TAU( M ) ) >*/
                slarfg_(&c__1, &a[*m + *m * a_dim1], &a[*m + *m * a_dim1], &
                        c__1, &tau[*m]);
/*<             END IF >*/
            }

/*<             IF( I.LT.N ) THEN >*/
            if (i__ < *n) {

/*              Apply H(i) to A(i:m,i+1:n) from the left */

/*<                AII = A( I, I ) >*/
                aii = a[i__ + i__ * a_dim1];
/*<                A( I, I ) = ONE >*/
                a[i__ + i__ * a_dim1] = (float)1.;
/*<    >*/
                i__2 = *m - i__ + 1;
                i__3 = *n - i__;
                slarf_("LEFT", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
                        tau[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[(*
                        n << 1) + 1], (ftnlen)4);
/*<                A( I, I ) = AII >*/
                a[i__ + i__ * a_dim1] = aii;
/*<             END IF >*/
            }

/*           Update partial column norms */

/*<             DO 30 J = I + 1, N >*/
            i__2 = *n;
            for (j = i__ + 1; j <= i__2; ++j) {
/*<                IF( WORK( J ).NE.ZERO ) THEN >*/
                if (work[j] != (float)0.) {
/*<                   TEMP = ONE - ( ABS( A( I, J ) ) / WORK( J ) )**2 >*/
/* Computing 2nd power */
                    r__2 = (r__1 = a[i__ + j * a_dim1], dabs(r__1)) / work[j];
                    temp = (float)1. - r__2 * r__2;
/*<                   TEMP = MAX( TEMP, ZERO ) >*/
                    temp = dmax(temp,(float)0.);
/*<                   TEMP2 = ONE + 0.05*TEMP*( WORK( J ) / WORK( N+J ) )**2 >*/
/* Computing 2nd power */
                    r__1 = work[j] / work[*n + j];
                    temp2 = temp * (float).05 * (r__1 * r__1) + (float)1.;
/*<                   IF( TEMP2.EQ.ONE ) THEN >*/
                    if (temp2 == (float)1.) {
/*<                      IF( M-I.GT.0 ) THEN >*/
                        if (*m - i__ > 0) {
/*<                         WORK( J ) = SNRM2( M-I, A( I+1, J ), 1 ) >*/
                            i__3 = *m - i__;
                            work[j] = snrm2_(&i__3, &a[i__ + 1 + j * a_dim1], 
                                    &c__1);
/*<                         WORK( N+J ) = WORK( J ) >*/
                            work[*n + j] = work[j];
/*<                      ELSE >*/
                        } else {
/*<                         WORK( J ) = ZERO >*/
                            work[j] = (float)0.;
/*<                         WORK( N+J ) = ZERO >*/
                            work[*n + j] = (float)0.;
/*<                      END IF >*/
                        }
/*<                   ELSE >*/
                    } else {
/*<                      WORK( J ) = WORK( J )*SQRT( TEMP ) >*/
                        work[j] *= sqrt(temp);
/*<                   END IF >*/
                    }
/*<                END IF >*/
                }
/*<    30       CONTINUE >*/
/* L30: */
            }

/*<    40    CONTINUE >*/
/* L40: */
        }
/*<       END IF >*/
    }
/*<       RETURN >*/
    return 0;

/*     End of SGEQPF */

/*<       END >*/
} /* sgeqpf_ */

#ifdef __cplusplus
        }
#endif