File: lsqr.f

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (611 lines) | stat: -rw-r--r-- 24,007 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
* From arpa!sol-michael.stanford.edu!mike 5 May 89 23:53:00 PDT
      SUBROUTINE LSQR  ( M, N, APROD, DAMP,
     $                   LENIW, LENRW, IW, RW,
     $                   U, V, W, X, SE,
     $                   ATOL, BTOL, CONLIM, ITNLIM, NOUT,
     $                   ISTOP, ITN, ANORM, ACOND, RNORM, ARNORM, XNORM)

      EXTERNAL           APROD
      INTEGER            M, N, LENIW, LENRW, ITNLIM, NOUT, ISTOP, ITN
      INTEGER            IW(LENIW)
      DOUBLE PRECISION   RW(LENRW), U(M), V(N), W(N), X(N), SE(N),
     $                   ATOL, BTOL, CONLIM, DAMP,
     $                   ANORM, ACOND, RNORM, ARNORM, XNORM
*-----------------------------------------------------------------------
*
*     LSQR  finds a solution x to the following problems:
*
*     1. Unsymmetric equations --    solve  A*x = b
*
*     2. Linear least squares  --    solve  A*x = b
*                                    in the least-squares sense
*
*     3. Damped least squares  --    solve  (   A    )*x = ( b )
*                                           ( damp*I )     ( 0 )
*                                    in the least-squares sense
*
*     where A is a matrix with m rows and n columns, b is an
*     m-vector, and damp is a scalar.  (All quantities are real.)
*     The matrix A is intended to be large and sparse.  It is accessed
*     by means of subroutine calls of the form
*
*                CALL APROD ( mode, m, n, x, y, LENIW, LENRW, IW, RW )
*
*     which must perform the following functions:
*
*                If MODE = 1, compute  y = y + A*x.
*                If MODE = 2, compute  x = x + A(transpose)*y.
*
*     The vectors x and y are input parameters in both cases.
*     If  mode = 1,  y should be altered without changing x.
*     If  mode = 2,  x should be altered without changing y.
*     The parameters LENIW, LENRW, IW, RW may be used for workspace
*     as described below.
*
*     The rhs vector b is input via U, and subsequently overwritten.
*
*
*     Note:  LSQR uses an iterative method to approximate the solution.
*     The number of iterations required to reach a certain accuracy
*     depends strongly on the scaling of the problem.  Poor scaling of
*     the rows or columns of A should therefore be avoided where
*     possible.
*
*     For example, in problem 1 the solution is unaltered by
*     row-scaling.  If a row of A is very small or large compared to
*     the other rows of A, the corresponding row of ( A  b ) should be
*     scaled up or down.
*
*     In problems 1 and 2, the solution x is easily recovered
*     following column-scaling.  Unless better information is known,
*     the nonzero columns of A should be scaled so that they all have
*     the same Euclidean norm (e.g., 1.0).
*
*     In problem 3, there is no freedom to re-scale if damp is
*     nonzero.  However, the value of damp should be assigned only
*     after attention has been paid to the scaling of A.
*
*     The parameter damp is intended to help regularize
*     ill-conditioned systems, by preventing the true solution from
*     being very large.  Another aid to regularization is provided by
*     the parameter ACOND, which may be used to terminate iterations
*     before the computed solution becomes very large.
*
*
*     Notation
*     --------
*
*     The following quantities are used in discussing the subroutine
*     parameters:
*
*     Abar   =  (   A    ),          bbar  =  ( b )
*               ( damp*I )                    ( 0 )
*
*     r      =  b  -  A*x,           rbar  =  bbar  -  Abar*x
*
*     rnorm  =  sqrt( norm(r)**2  +  damp**2 * norm(x)**2 )
*            =  norm( rbar )
*
*     RELPR  =  the relative precision of floating-point arithmetic
*               on the machine being used.  For example, on the IBM 370,
*               RELPR is about 1.0E-6 and 1.0D-16 in single and double
*               precision respectively.
*
*     LSQR  minimizes the function rnorm with respect to x.
*
*
*     Parameters
*     ----------
*
*     M       input      m, the number of rows in A.
*
*     N       input      n, the number of columns in A.
*
*     APROD   external   See above.
*
*     DAMP    input      The damping parameter for problem 3 above.
*                        (DAMP should be 0.0 for problems 1 and 2.)
*                        If the system A*x = b is incompatible, values
*                        of DAMP in the range 0 to sqrt(RELPR)*norm(A)
*                        will probably have a negligible effect.
*                        Larger values of DAMP will tend to decrease
*                        the norm of x and reduce the number of
*                        iterations required by LSQR.
*
*                        The work per iteration and the storage needed
*                        by LSQR are the same for all values of DAMP.
*
*     LENIW   input      The length of the workspace array IW.
*     LENRW   input      The length of the workspace array RW.
*     IW      workspace  An integer array of length LENIW.
*     RW      workspace  A real array of length LENRW.
*
*             Note:  LSQR  does not explicitly use the previous four
*             parameters, but passes them to subroutine APROD for
*             possible use as workspace.  If APROD does not need
*             IW or RW, the values LENIW = 1 or LENRW = 1 should
*             be used, and the actual parameters corresponding to
*             IW or RW  may be any convenient array of suitable type.
*
*     U(M)    input      The rhs vector b.  Beware that U is
*                        over-written by LSQR.
*
*     V(N)    workspace
*     W(N)    workspace
*
*     X(N)    output     Returns the computed solution x.
*
*     SE(N)   output     Returns standard error estimates for the
*                        components of X.  For each i, SE(i) is set
*                        to the value  rnorm * sqrt( sigma(i,i) / T ),
*                        where sigma(i,i) is an estimate of the i-th
*                        diagonal of the inverse of Abar(transpose)*Abar
*                        and  T = 1      if  m .le. n,
*                             T = m - n  if  m .gt. n  and  damp = 0,
*                             T = m      if  damp .ne. 0.
*
*     ATOL    input      An estimate of the relative error in the data
*                        defining the matrix A.  For example,
*                        if A is accurate to about 6 digits, set
*                        ATOL = 1.0E-6 .
*
*     BTOL    input      An extimate of the relative error in the data
*                        defining the rhs vector b.  For example,
*                        if b is accurate to about 6 digits, set
*                        BTOL = 1.0E-6 .
*
*     CONLIM  input      An upper limit on cond(Abar), the apparent
*                        condition number of the matrix Abar.
*                        Iterations will be terminated if a computed
*                        estimate of cond(Abar) exceeds CONLIM.
*                        This is intended to prevent certain small or
*                        zero singular values of A or Abar from
*                        coming into effect and causing unwanted growth
*                        in the computed solution.
*
*                        CONLIM and DAMP may be used separately or
*                        together to regularize ill-conditioned systems.
*
*                        Normally, CONLIM should be in the range
*                        1000 to 1/RELPR.
*                        Suggested value:
*                        CONLIM = 1/(100*RELPR)  for compatible systems,
*                        CONLIM = 1/(10*sqrt(RELPR)) for least squares.
*
*             Note:  If the user is not concerned about the parameters
*             ATOL, BTOL and CONLIM, any or all of them may be set
*             to zero.  The effect will be the same as the values
*             RELPR, RELPR and 1/RELPR respectively.
*
*     ITNLIM  input      An upper limit on the number of iterations.
*                        Suggested value:
*                        ITNLIM = n/2   for well-conditioned systems
*                                       with clustered singular values,
*                        ITNLIM = 4*n   otherwise.
*
*     NOUT    input      File number for printed output.  If positive,
*                        a summary will be printed on file NOUT.
*
*     ISTOP   output     An integer giving the reason for termination:
*
*                0       x = 0  is the exact solution.
*                        No iterations were performed.
*
*                1       The equations A*x = b are probably
*                        compatible.  Norm(A*x - b) is sufficiently
*                        small, given the values of ATOL and BTOL.
*
*                2       The system A*x = b is probably not
*                        compatible.  A least-squares solution has
*                        been obtained that is sufficiently accurate,
*                        given the value of ATOL.
*
*                3       An estimate of cond(Abar) has exceeded
*                        CONLIM.  The system A*x = b appears to be
*                        ill-conditioned.  Otherwise, there could be an
*                        error in subroutine APROD.
*
*                4       The equations A*x = b are probably
*                        compatible.  Norm(A*x - b) is as small as
*                        seems reasonable on this machine.
*
*                5       The system A*x = b is probably not
*                        compatible.  A least-squares solution has
*                        been obtained that is as accurate as seems
*                        reasonable on this machine.
*
*                6       Cond(Abar) seems to be so large that there is
*                        no point in doing further iterations,
*                        given the precision of this machine.
*                        There could be an error in subroutine APROD.
*
*                7       The iteration limit ITNLIM was reached.
*
*     ITN     output     The number of iterations performed.
*
*     ANORM   output     An estimate of the Frobenius norm of  Abar.
*                        This is the square-root of the sum of squares
*                        of the elements of Abar.
*                        If DAMP is small and if the columns of A
*                        have all been scaled to have length 1.0,
*                        ANORM should increase to roughly sqrt(n).
*                        A radically different value for ANORM may
*                        indicate an error in subroutine APROD (there
*                        may be an inconsistency between modes 1 and 2).
*
*     ACOND   output     An estimate of cond(Abar), the condition
*                        number of Abar.  A very high value of ACOND
*                        may again indicate an error in APROD.
*
*     RNORM   output     An estimate of the final value of norm(rbar),
*                        the function being minimized (see notation
*                        above).  This will be small if A*x = b has
*                        a solution.
*
*     ARNORM  output     An estimate of the final value of
*                        norm( Abar(transpose)*rbar ), the norm of
*                        the residual for the usual normal equations.
*                        This should be small in all cases.  (ARNORM
*                        will often be smaller than the true value
*                        computed from the output vector X.)
*
*     XNORM   output     An estimate of the norm of the final
*                        solution vector X.
*
*
*     Subroutines and functions used
*     ------------------------------
*
*     USER               APROD
*     BLAS               DCOPY, DNRM2, DSCAL (see Lawson et al. below)
*
*
*     Precision
*     ---------
*
*     The number of iterations required by LSQR will usually decrease
*     if the computation is performed in higher precision.  To convert
*     LSQR between single and double precision, change the words
*                        DOUBLE PRECISION
*                        DCOPY, DNRM2, DSCAL
*     to the appropriate FORTRAN and BLAS equivalents.
*     Also change 'D+' or 'E+' in the PARAMETER statement.
*
*
*     References
*     ----------
*
*     C.C. Paige and M.A. Saunders,  LSQR: An algorithm for sparse
*          linear equations and sparse least squares,
*          ACM Transactions on Mathematical Software 8, 1 (March 1982),
*          pp. 43-71.
*
*     C.C. Paige and M.A. Saunders,  Algorithm 583, LSQR: Sparse
*          linear equations and least-squares problems,
*          ACM Transactions on Mathematical Software 8, 2 (June 1982),
*          pp. 195-209.
*
*     C.L. Lawson, R.J. Hanson, D.R. Kincaid and F.T. Krogh,
*          Basic linear algebra subprograms for Fortran usage,
*          ACM Transactions on Mathematical Software 5, 3 (Sept 1979),
*          pp. 308-323 and 324-325.
*-----------------------------------------------------------------------
*
*
*     LSQR development:
*     22 Feb 1982: LSQR sent to ACM TOMS to become Algorithm 583.
*     15 Sep 1985: Final F66 version.  LSQR sent to "misc" in netlib.
*     13 Oct 1987: Bug (Robert Davies, DSIR).  Have to delete
*                     IF ( (ONE + DABS(T)) .LE. ONE ) GO TO 200
*                  from loop 200.  The test was an attempt to reduce
*                  underflows, but caused W(I) not to be updated.
*     17 Mar 1989: First F77 version.
*     04 May 1989: Bug (David Gay, AT&T).  When the second BETA is zero,
*                  RNORM = 0 and
*                  TEST2 = ARNORM / (ANORM * RNORM) overflows.
*                  Fixed by testing for RNORM = 0.
*     05 May 1989: Sent to "misc" in netlib.
*
*     Michael A. Saunders            (na.saunders @ NA-net.stanford.edu)
*     Department of Operations Research
*     Stanford University
*     Stanford, CA 94305-4022.
*-----------------------------------------------------------------------

*     Intrinsics and local variables

      INTRINSIC          ABS, MOD, SQRT
      INTEGER            I, NCONV, NSTOP
      DOUBLE PRECISION   DNRM2
      DOUBLE PRECISION   ALFA, BBNORM, BETA, BNORM,
     $                   CS, CS1, CS2, CTOL, DAMPSQ, DDNORM, DELTA,
     $                   GAMMA, GAMBAR, PHI, PHIBAR, PSI,
     $                   RES1, RES2, RHO, RHOBAR, RHBAR1, RHBAR2,
     $                   RHS, RTOL, SN, SN1, SN2,
     $                   T, TAU, TEST1, TEST2, TEST3,
     $                   THETA, T1, T2, T3, XXNORM, Z, ZBAR

      DOUBLE PRECISION   ZERO,           ONE
      PARAMETER        ( ZERO = 0.0D+0,  ONE = 1.0D+0 )

C      CHARACTER*16       ENTER, EXIT
C      CHARACTER*60       MSG(0:7)

C      DATA               ENTER /' Enter LSQR.    '/,
C     $                   EXIT  /' Exit  LSQR.    '/

C      DATA               MSG
C     $ / 'The exact solution is  X = 0',
C     $   'Ax - b is small enough, given ATOL, BTOL',
C     $   'The least-squares solution is good enough, given ATOL',
C     $   'The estimate of cond(Abar) has exceeded CONLIM',
C     $   'Ax - b is small enough for this machine',
C     $   'The least-squares solution is good enough for this machine',
C     $   'Cond(Abar) seems to be too large for this machine',
C     $   'The iteration limit has been reached' /
*-----------------------------------------------------------------------


*     Initialize.

C      IF (NOUT .GT. 0)
C     $   WRITE(NOUT, 1000) ENTER, M, N, DAMP, ATOL, CONLIM, BTOL, ITNLIM
      ITN    =   0
      ISTOP  =   0
      NSTOP  =   0
      CTOL   =   ZERO
      IF (CONLIM .GT. ZERO) CTOL = ONE / CONLIM
      ANORM  =   ZERO
      ACOND  =   ZERO
      BBNORM =   ZERO
      DAMPSQ =   DAMP**2
      DDNORM =   ZERO
      RES2   =   ZERO
      XNORM  =   ZERO
      XXNORM =   ZERO
      CS2    = - ONE
      SN2    =   ZERO
      Z      =   ZERO

      DO 10  I = 1, N
         V(I)  =  ZERO
         X(I)  =  ZERO
        SE(I)  =  ZERO
   10 CONTINUE

*     Set up the first vectors U and V for the bidiagonalization.
*     These satisfy  BETA*U = b,  ALFA*V = A(transpose)*U.

      ALFA   =   ZERO
      BETA   =   DNRM2 ( M, U, 1 )

      IF (BETA .GT. ZERO) THEN
         CALL DSCAL ( M, (ONE / BETA), U, 1 )
         CALL APROD ( 2, M, N, V, U, LENIW, LENRW, IW, RW )
         ALFA   =   DNRM2 ( N, V, 1 )
      END IF

      IF (ALFA .GT. ZERO) THEN
         CALL DSCAL ( N, (ONE / ALFA), V, 1 )
         CALL DCOPY ( N, V, 1, W, 1 )
      END IF

      ARNORM =   ALFA * BETA
      IF (ARNORM .EQ. ZERO) GO TO 800

      RHOBAR =   ALFA
      PHIBAR =   BETA
      BNORM  =   BETA
      RNORM  =   BETA

C      IF (NOUT   .GT.  0  ) THEN
C         IF (DAMPSQ .EQ. ZERO) THEN
C             WRITE(NOUT, 1200)
C         ELSE
C             WRITE(NOUT, 1300)
C         END IF
C         TEST1  = ONE
C         TEST2  = ALFA / BETA
C         WRITE(NOUT, 1500) ITN, X(1), RNORM, TEST1, TEST2
C         WRITE(NOUT, 1600)
C      END IF

*     ------------------------------------------------------------------
*     Main iteration loop.
*     ------------------------------------------------------------------
  100 ITN    = ITN + 1

*     Perform the next step of the bidiagonalization to obtain the
*     next  BETA, U, ALFA, V.  These satisfy the relations
*                BETA*U  =  A*V  -  ALFA*U,
*                ALFA*V  =  A(transpose)*U  -  BETA*V.

      CALL DSCAL ( M, (- ALFA), U, 1 )
      CALL APROD ( 1, M, N, V, U, LENIW, LENRW, IW, RW )
      BETA   =   DNRM2 ( M, U, 1 )
      BBNORM =   BBNORM  +  ALFA**2  +  BETA**2  +  DAMPSQ

      IF (BETA .GT. ZERO) THEN
         CALL DSCAL ( M, (ONE / BETA), U, 1 )
         CALL DSCAL ( N, (- BETA), V, 1 )
         CALL APROD ( 2, M, N, V, U, LENIW, LENRW, IW, RW )
         ALFA   =   DNRM2 ( N, V, 1 )
         IF (ALFA .GT. ZERO) THEN
            CALL DSCAL ( N, (ONE / ALFA), V, 1 )
         END IF
      END IF

*     Use a plane rotation to eliminate the damping parameter.
*     This alters the diagonal (RHOBAR) of the lower-bidiagonal matrix.

      RHBAR2 = RHOBAR**2  +  DAMPSQ
      RHBAR1 = SQRT( RHBAR2 )
      CS1    = RHOBAR / RHBAR1
      SN1    = DAMP   / RHBAR1
      PSI    = SN1 * PHIBAR
      PHIBAR = CS1 * PHIBAR

*     Use a plane rotation to eliminate the subdiagonal element (BETA)
*     of the lower-bidiagonal matrix, giving an upper-bidiagonal matrix.

      RHO    =   SQRT( RHBAR2  +  BETA**2 )
      CS     =   RHBAR1 / RHO
      SN     =   BETA   / RHO
      THETA  =   SN * ALFA
      RHOBAR = - CS * ALFA
      PHI    =   CS * PHIBAR
      PHIBAR =   SN * PHIBAR
      TAU    =   SN * PHI

*     Update  X, W  and the standard error estimates.

      T1     =   PHI   / RHO
      T2     = - THETA / RHO
      T3     =   ONE   / RHO

      DO 200  I =  1, N
         T      =  W(I)
         X(I)   =  T1*T  +  X(I)
         W(I)   =  T2*T  +  V(I)
         T      = (T3*T)**2
         SE(I)  =  T     +  SE(I)
         DDNORM =  T     +  DDNORM
  200 CONTINUE

*     Use a plane rotation on the right to eliminate the
*     super-diagonal element (THETA) of the upper-bidiagonal matrix.
*     Then use the result to estimate  norm(X).

      DELTA  =   SN2 * RHO
      GAMBAR = - CS2 * RHO
      RHS    =   PHI    - DELTA * Z
      ZBAR   =   RHS    / GAMBAR
      XNORM  =   SQRT( XXNORM    + ZBAR **2 )
      GAMMA  =   SQRT( GAMBAR**2 + THETA**2 )
      CS2    =   GAMBAR / GAMMA
      SN2    =   THETA  / GAMMA
      Z      =   RHS    / GAMMA
      XXNORM =   XXNORM + Z**2

*     Test for convergence.
*     First, estimate the norm and condition of the matrix  Abar,
*     and the norms of  rbar  and  Abar(transpose)*rbar.

      ANORM  =   SQRT( BBNORM )
      ACOND  =   ANORM * SQRT( DDNORM )
      RES1   =   PHIBAR**2
      RES2   =   RES2  +  PSI**2
      RNORM  =   SQRT( RES1 + RES2 )
      ARNORM =   ALFA  * ABS( TAU )

*     Now use these norms to estimate certain other quantities,
*     some of which will be small near a solution.

      TEST1  =   RNORM /  BNORM
      TEST2  =   ZERO
      IF (RNORM .GT. ZERO) TEST2 = ARNORM / (ANORM * RNORM)
      TEST3  =   ONE   /  ACOND
      T1     =   TEST1 / (ONE  +  ANORM * XNORM / BNORM)
      RTOL   =   BTOL  +  ATOL *  ANORM * XNORM / BNORM

*     The following tests guard against extremely small values of
*     ATOL, BTOL  or  CTOL.  (The user may have set any or all of
*     the parameters  ATOL, BTOL, CONLIM  to zero.)
*     The effect is equivalent to the normal tests using
*     ATOL = RELPR,  BTOL = RELPR,  CONLIM = 1/RELPR.

      T3     =   ONE + TEST3
      T2     =   ONE + TEST2
      T1     =   ONE + T1
      IF (ITN .GE. ITNLIM) ISTOP = 7
      IF (T3  .LE. ONE   ) ISTOP = 6
      IF (T2  .LE. ONE   ) ISTOP = 5
      IF (T1  .LE. ONE   ) ISTOP = 4

*     Allow for tolerances set by the user.

      IF (TEST3 .LE. CTOL) ISTOP = 3
      IF (TEST2 .LE. ATOL) ISTOP = 2
      IF (TEST1 .LE. RTOL) ISTOP = 1
*     ==================================================================

*     See if it is time to print something.

      IF (NOUT  .LE.  0       ) GO TO 600
      IF (N     .LE. 40       ) GO TO 400
      IF (ITN   .LE. 10       ) GO TO 400
      IF (ITN   .GE. ITNLIM-10) GO TO 400
      IF (MOD(ITN,10) .EQ. 0  ) GO TO 400
      IF (TEST3 .LE.  2.0*CTOL) GO TO 400
      IF (TEST2 .LE. 10.0*ATOL) GO TO 400
      IF (TEST1 .LE. 10.0*RTOL) GO TO 400
      IF (ISTOP .NE.  0       ) GO TO 400
      GO TO 600

*     Print a line for this iteration.

  400 IF (1 .EQ. 1) GO TO 600
C  400 WRITE(NOUT, 1500) ITN, X(1), RNORM, TEST1, TEST2, ANORM, ACOND
C      IF (MOD(ITN,10) .EQ. 0) WRITE(NOUT, 1600)
*     ==================================================================

*     Stop if appropriate.
*     The convergence criteria are required to be met on  NCONV
*     consecutive iterations, where  NCONV  is set below.
*     Suggested value:  NCONV = 1, 2  or  3.

  600 IF (ISTOP .EQ. 0) NSTOP = 0
      IF (ISTOP .EQ. 0) GO TO 100
      NCONV  =   1
      NSTOP  =   NSTOP + 1
      IF (NSTOP .LT. NCONV  .AND.  ITN .LT. ITNLIM) ISTOP = 0
      IF (ISTOP .EQ. 0) GO TO 100
*     ------------------------------------------------------------------
*     End of iteration loop.
*     ------------------------------------------------------------------


*     Finish off the standard error estimates.

      T    =   ONE
      IF (M      .GT.   N )  T = M - N
      IF (DAMPSQ .GT. ZERO)  T = M
      T    =   RNORM / SQRT( T )

      DO 700  I = 1, N
         SE(I)  = T * SQRT( SE(I) )
  700 CONTINUE

*     Print the stopping condition.

  800 IF (1 .EQ. 1) GO TO 900
C  800 IF (NOUT .GT. 0) THEN
C         WRITE(NOUT, 2000) EXIT, ISTOP, ITN,
C     $                     EXIT, ANORM, ACOND,
C     $                     EXIT, RNORM, ARNORM,
C     $                     EXIT, BNORM, XNORM
C         WRITE(NOUT, 3000) EXIT, MSG(ISTOP)
C      END IF

  900 RETURN

*     ------------------------------------------------------------------
 1000 FORMAT(// 1P, A, '  Least-squares solution of  A*x = b'
     $    / ' The matrix  A  has', I7, ' rows   and', I7, ' columns'
     $    / ' The damping parameter is         DAMP   =', E10.2
     $    / ' ATOL   =', E10.2, 15X,        'CONLIM =', E10.2
     $    / ' BTOL   =', E10.2, 15X,        'ITNLIM =', I10)
 1200 FORMAT(// '   Itn       x(1)           Function',
     $   '     Compatible   LS        Norm A    Cond A' /)
 1300 FORMAT(// '   Itn       x(1)           Function',
     $   '     Compatible   LS     Norm Abar Cond Abar' /)
 1500 FORMAT(1P, I6, 2E17.9, 4E10.2)
 1600 FORMAT(1X)
 2000 FORMAT(/ 1P, A, 6X, 'ISTOP =', I3,   16X, 'ITN    =', I9
     $       /     A, 6X, 'ANORM =', E13.5, 6X, 'ACOND  =', E13.5
     $       /     A, 6X, 'RNORM =', E13.5, 6X, 'ARNORM =', E13.5,
     $       /     A, 6X, 'BNORM =', E13.5, 6X, 'XNORM  =', E13.5)
 3000 FORMAT( A, 6X, A )
*     ------------------------------------------------------------------
*     End of LSQR
      END