1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
|
* From arpa!sol-michael.stanford.edu!mike 5 May 89 23:53:00 PDT
SUBROUTINE LSQR ( M, N, APROD, DAMP,
$ LENIW, LENRW, IW, RW,
$ U, V, W, X, SE,
$ ATOL, BTOL, CONLIM, ITNLIM, NOUT,
$ ISTOP, ITN, ANORM, ACOND, RNORM, ARNORM, XNORM)
EXTERNAL APROD
INTEGER M, N, LENIW, LENRW, ITNLIM, NOUT, ISTOP, ITN
INTEGER IW(LENIW)
DOUBLE PRECISION RW(LENRW), U(M), V(N), W(N), X(N), SE(N),
$ ATOL, BTOL, CONLIM, DAMP,
$ ANORM, ACOND, RNORM, ARNORM, XNORM
*-----------------------------------------------------------------------
*
* LSQR finds a solution x to the following problems:
*
* 1. Unsymmetric equations -- solve A*x = b
*
* 2. Linear least squares -- solve A*x = b
* in the least-squares sense
*
* 3. Damped least squares -- solve ( A )*x = ( b )
* ( damp*I ) ( 0 )
* in the least-squares sense
*
* where A is a matrix with m rows and n columns, b is an
* m-vector, and damp is a scalar. (All quantities are real.)
* The matrix A is intended to be large and sparse. It is accessed
* by means of subroutine calls of the form
*
* CALL APROD ( mode, m, n, x, y, LENIW, LENRW, IW, RW )
*
* which must perform the following functions:
*
* If MODE = 1, compute y = y + A*x.
* If MODE = 2, compute x = x + A(transpose)*y.
*
* The vectors x and y are input parameters in both cases.
* If mode = 1, y should be altered without changing x.
* If mode = 2, x should be altered without changing y.
* The parameters LENIW, LENRW, IW, RW may be used for workspace
* as described below.
*
* The rhs vector b is input via U, and subsequently overwritten.
*
*
* Note: LSQR uses an iterative method to approximate the solution.
* The number of iterations required to reach a certain accuracy
* depends strongly on the scaling of the problem. Poor scaling of
* the rows or columns of A should therefore be avoided where
* possible.
*
* For example, in problem 1 the solution is unaltered by
* row-scaling. If a row of A is very small or large compared to
* the other rows of A, the corresponding row of ( A b ) should be
* scaled up or down.
*
* In problems 1 and 2, the solution x is easily recovered
* following column-scaling. Unless better information is known,
* the nonzero columns of A should be scaled so that they all have
* the same Euclidean norm (e.g., 1.0).
*
* In problem 3, there is no freedom to re-scale if damp is
* nonzero. However, the value of damp should be assigned only
* after attention has been paid to the scaling of A.
*
* The parameter damp is intended to help regularize
* ill-conditioned systems, by preventing the true solution from
* being very large. Another aid to regularization is provided by
* the parameter ACOND, which may be used to terminate iterations
* before the computed solution becomes very large.
*
*
* Notation
* --------
*
* The following quantities are used in discussing the subroutine
* parameters:
*
* Abar = ( A ), bbar = ( b )
* ( damp*I ) ( 0 )
*
* r = b - A*x, rbar = bbar - Abar*x
*
* rnorm = sqrt( norm(r)**2 + damp**2 * norm(x)**2 )
* = norm( rbar )
*
* RELPR = the relative precision of floating-point arithmetic
* on the machine being used. For example, on the IBM 370,
* RELPR is about 1.0E-6 and 1.0D-16 in single and double
* precision respectively.
*
* LSQR minimizes the function rnorm with respect to x.
*
*
* Parameters
* ----------
*
* M input m, the number of rows in A.
*
* N input n, the number of columns in A.
*
* APROD external See above.
*
* DAMP input The damping parameter for problem 3 above.
* (DAMP should be 0.0 for problems 1 and 2.)
* If the system A*x = b is incompatible, values
* of DAMP in the range 0 to sqrt(RELPR)*norm(A)
* will probably have a negligible effect.
* Larger values of DAMP will tend to decrease
* the norm of x and reduce the number of
* iterations required by LSQR.
*
* The work per iteration and the storage needed
* by LSQR are the same for all values of DAMP.
*
* LENIW input The length of the workspace array IW.
* LENRW input The length of the workspace array RW.
* IW workspace An integer array of length LENIW.
* RW workspace A real array of length LENRW.
*
* Note: LSQR does not explicitly use the previous four
* parameters, but passes them to subroutine APROD for
* possible use as workspace. If APROD does not need
* IW or RW, the values LENIW = 1 or LENRW = 1 should
* be used, and the actual parameters corresponding to
* IW or RW may be any convenient array of suitable type.
*
* U(M) input The rhs vector b. Beware that U is
* over-written by LSQR.
*
* V(N) workspace
* W(N) workspace
*
* X(N) output Returns the computed solution x.
*
* SE(N) output Returns standard error estimates for the
* components of X. For each i, SE(i) is set
* to the value rnorm * sqrt( sigma(i,i) / T ),
* where sigma(i,i) is an estimate of the i-th
* diagonal of the inverse of Abar(transpose)*Abar
* and T = 1 if m .le. n,
* T = m - n if m .gt. n and damp = 0,
* T = m if damp .ne. 0.
*
* ATOL input An estimate of the relative error in the data
* defining the matrix A. For example,
* if A is accurate to about 6 digits, set
* ATOL = 1.0E-6 .
*
* BTOL input An extimate of the relative error in the data
* defining the rhs vector b. For example,
* if b is accurate to about 6 digits, set
* BTOL = 1.0E-6 .
*
* CONLIM input An upper limit on cond(Abar), the apparent
* condition number of the matrix Abar.
* Iterations will be terminated if a computed
* estimate of cond(Abar) exceeds CONLIM.
* This is intended to prevent certain small or
* zero singular values of A or Abar from
* coming into effect and causing unwanted growth
* in the computed solution.
*
* CONLIM and DAMP may be used separately or
* together to regularize ill-conditioned systems.
*
* Normally, CONLIM should be in the range
* 1000 to 1/RELPR.
* Suggested value:
* CONLIM = 1/(100*RELPR) for compatible systems,
* CONLIM = 1/(10*sqrt(RELPR)) for least squares.
*
* Note: If the user is not concerned about the parameters
* ATOL, BTOL and CONLIM, any or all of them may be set
* to zero. The effect will be the same as the values
* RELPR, RELPR and 1/RELPR respectively.
*
* ITNLIM input An upper limit on the number of iterations.
* Suggested value:
* ITNLIM = n/2 for well-conditioned systems
* with clustered singular values,
* ITNLIM = 4*n otherwise.
*
* NOUT input File number for printed output. If positive,
* a summary will be printed on file NOUT.
*
* ISTOP output An integer giving the reason for termination:
*
* 0 x = 0 is the exact solution.
* No iterations were performed.
*
* 1 The equations A*x = b are probably
* compatible. Norm(A*x - b) is sufficiently
* small, given the values of ATOL and BTOL.
*
* 2 The system A*x = b is probably not
* compatible. A least-squares solution has
* been obtained that is sufficiently accurate,
* given the value of ATOL.
*
* 3 An estimate of cond(Abar) has exceeded
* CONLIM. The system A*x = b appears to be
* ill-conditioned. Otherwise, there could be an
* error in subroutine APROD.
*
* 4 The equations A*x = b are probably
* compatible. Norm(A*x - b) is as small as
* seems reasonable on this machine.
*
* 5 The system A*x = b is probably not
* compatible. A least-squares solution has
* been obtained that is as accurate as seems
* reasonable on this machine.
*
* 6 Cond(Abar) seems to be so large that there is
* no point in doing further iterations,
* given the precision of this machine.
* There could be an error in subroutine APROD.
*
* 7 The iteration limit ITNLIM was reached.
*
* ITN output The number of iterations performed.
*
* ANORM output An estimate of the Frobenius norm of Abar.
* This is the square-root of the sum of squares
* of the elements of Abar.
* If DAMP is small and if the columns of A
* have all been scaled to have length 1.0,
* ANORM should increase to roughly sqrt(n).
* A radically different value for ANORM may
* indicate an error in subroutine APROD (there
* may be an inconsistency between modes 1 and 2).
*
* ACOND output An estimate of cond(Abar), the condition
* number of Abar. A very high value of ACOND
* may again indicate an error in APROD.
*
* RNORM output An estimate of the final value of norm(rbar),
* the function being minimized (see notation
* above). This will be small if A*x = b has
* a solution.
*
* ARNORM output An estimate of the final value of
* norm( Abar(transpose)*rbar ), the norm of
* the residual for the usual normal equations.
* This should be small in all cases. (ARNORM
* will often be smaller than the true value
* computed from the output vector X.)
*
* XNORM output An estimate of the norm of the final
* solution vector X.
*
*
* Subroutines and functions used
* ------------------------------
*
* USER APROD
* BLAS DCOPY, DNRM2, DSCAL (see Lawson et al. below)
*
*
* Precision
* ---------
*
* The number of iterations required by LSQR will usually decrease
* if the computation is performed in higher precision. To convert
* LSQR between single and double precision, change the words
* DOUBLE PRECISION
* DCOPY, DNRM2, DSCAL
* to the appropriate FORTRAN and BLAS equivalents.
* Also change 'D+' or 'E+' in the PARAMETER statement.
*
*
* References
* ----------
*
* C.C. Paige and M.A. Saunders, LSQR: An algorithm for sparse
* linear equations and sparse least squares,
* ACM Transactions on Mathematical Software 8, 1 (March 1982),
* pp. 43-71.
*
* C.C. Paige and M.A. Saunders, Algorithm 583, LSQR: Sparse
* linear equations and least-squares problems,
* ACM Transactions on Mathematical Software 8, 2 (June 1982),
* pp. 195-209.
*
* C.L. Lawson, R.J. Hanson, D.R. Kincaid and F.T. Krogh,
* Basic linear algebra subprograms for Fortran usage,
* ACM Transactions on Mathematical Software 5, 3 (Sept 1979),
* pp. 308-323 and 324-325.
*-----------------------------------------------------------------------
*
*
* LSQR development:
* 22 Feb 1982: LSQR sent to ACM TOMS to become Algorithm 583.
* 15 Sep 1985: Final F66 version. LSQR sent to "misc" in netlib.
* 13 Oct 1987: Bug (Robert Davies, DSIR). Have to delete
* IF ( (ONE + DABS(T)) .LE. ONE ) GO TO 200
* from loop 200. The test was an attempt to reduce
* underflows, but caused W(I) not to be updated.
* 17 Mar 1989: First F77 version.
* 04 May 1989: Bug (David Gay, AT&T). When the second BETA is zero,
* RNORM = 0 and
* TEST2 = ARNORM / (ANORM * RNORM) overflows.
* Fixed by testing for RNORM = 0.
* 05 May 1989: Sent to "misc" in netlib.
*
* Michael A. Saunders (na.saunders @ NA-net.stanford.edu)
* Department of Operations Research
* Stanford University
* Stanford, CA 94305-4022.
*-----------------------------------------------------------------------
* Intrinsics and local variables
INTRINSIC ABS, MOD, SQRT
INTEGER I, NCONV, NSTOP
DOUBLE PRECISION DNRM2
DOUBLE PRECISION ALFA, BBNORM, BETA, BNORM,
$ CS, CS1, CS2, CTOL, DAMPSQ, DDNORM, DELTA,
$ GAMMA, GAMBAR, PHI, PHIBAR, PSI,
$ RES1, RES2, RHO, RHOBAR, RHBAR1, RHBAR2,
$ RHS, RTOL, SN, SN1, SN2,
$ T, TAU, TEST1, TEST2, TEST3,
$ THETA, T1, T2, T3, XXNORM, Z, ZBAR
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C CHARACTER*16 ENTER, EXIT
C CHARACTER*60 MSG(0:7)
C DATA ENTER /' Enter LSQR. '/,
C $ EXIT /' Exit LSQR. '/
C DATA MSG
C $ / 'The exact solution is X = 0',
C $ 'Ax - b is small enough, given ATOL, BTOL',
C $ 'The least-squares solution is good enough, given ATOL',
C $ 'The estimate of cond(Abar) has exceeded CONLIM',
C $ 'Ax - b is small enough for this machine',
C $ 'The least-squares solution is good enough for this machine',
C $ 'Cond(Abar) seems to be too large for this machine',
C $ 'The iteration limit has been reached' /
*-----------------------------------------------------------------------
* Initialize.
C IF (NOUT .GT. 0)
C $ WRITE(NOUT, 1000) ENTER, M, N, DAMP, ATOL, CONLIM, BTOL, ITNLIM
ITN = 0
ISTOP = 0
NSTOP = 0
CTOL = ZERO
IF (CONLIM .GT. ZERO) CTOL = ONE / CONLIM
ANORM = ZERO
ACOND = ZERO
BBNORM = ZERO
DAMPSQ = DAMP**2
DDNORM = ZERO
RES2 = ZERO
XNORM = ZERO
XXNORM = ZERO
CS2 = - ONE
SN2 = ZERO
Z = ZERO
DO 10 I = 1, N
V(I) = ZERO
X(I) = ZERO
SE(I) = ZERO
10 CONTINUE
* Set up the first vectors U and V for the bidiagonalization.
* These satisfy BETA*U = b, ALFA*V = A(transpose)*U.
ALFA = ZERO
BETA = DNRM2 ( M, U, 1 )
IF (BETA .GT. ZERO) THEN
CALL DSCAL ( M, (ONE / BETA), U, 1 )
CALL APROD ( 2, M, N, V, U, LENIW, LENRW, IW, RW )
ALFA = DNRM2 ( N, V, 1 )
END IF
IF (ALFA .GT. ZERO) THEN
CALL DSCAL ( N, (ONE / ALFA), V, 1 )
CALL DCOPY ( N, V, 1, W, 1 )
END IF
ARNORM = ALFA * BETA
IF (ARNORM .EQ. ZERO) GO TO 800
RHOBAR = ALFA
PHIBAR = BETA
BNORM = BETA
RNORM = BETA
C IF (NOUT .GT. 0 ) THEN
C IF (DAMPSQ .EQ. ZERO) THEN
C WRITE(NOUT, 1200)
C ELSE
C WRITE(NOUT, 1300)
C END IF
C TEST1 = ONE
C TEST2 = ALFA / BETA
C WRITE(NOUT, 1500) ITN, X(1), RNORM, TEST1, TEST2
C WRITE(NOUT, 1600)
C END IF
* ------------------------------------------------------------------
* Main iteration loop.
* ------------------------------------------------------------------
100 ITN = ITN + 1
* Perform the next step of the bidiagonalization to obtain the
* next BETA, U, ALFA, V. These satisfy the relations
* BETA*U = A*V - ALFA*U,
* ALFA*V = A(transpose)*U - BETA*V.
CALL DSCAL ( M, (- ALFA), U, 1 )
CALL APROD ( 1, M, N, V, U, LENIW, LENRW, IW, RW )
BETA = DNRM2 ( M, U, 1 )
BBNORM = BBNORM + ALFA**2 + BETA**2 + DAMPSQ
IF (BETA .GT. ZERO) THEN
CALL DSCAL ( M, (ONE / BETA), U, 1 )
CALL DSCAL ( N, (- BETA), V, 1 )
CALL APROD ( 2, M, N, V, U, LENIW, LENRW, IW, RW )
ALFA = DNRM2 ( N, V, 1 )
IF (ALFA .GT. ZERO) THEN
CALL DSCAL ( N, (ONE / ALFA), V, 1 )
END IF
END IF
* Use a plane rotation to eliminate the damping parameter.
* This alters the diagonal (RHOBAR) of the lower-bidiagonal matrix.
RHBAR2 = RHOBAR**2 + DAMPSQ
RHBAR1 = SQRT( RHBAR2 )
CS1 = RHOBAR / RHBAR1
SN1 = DAMP / RHBAR1
PSI = SN1 * PHIBAR
PHIBAR = CS1 * PHIBAR
* Use a plane rotation to eliminate the subdiagonal element (BETA)
* of the lower-bidiagonal matrix, giving an upper-bidiagonal matrix.
RHO = SQRT( RHBAR2 + BETA**2 )
CS = RHBAR1 / RHO
SN = BETA / RHO
THETA = SN * ALFA
RHOBAR = - CS * ALFA
PHI = CS * PHIBAR
PHIBAR = SN * PHIBAR
TAU = SN * PHI
* Update X, W and the standard error estimates.
T1 = PHI / RHO
T2 = - THETA / RHO
T3 = ONE / RHO
DO 200 I = 1, N
T = W(I)
X(I) = T1*T + X(I)
W(I) = T2*T + V(I)
T = (T3*T)**2
SE(I) = T + SE(I)
DDNORM = T + DDNORM
200 CONTINUE
* Use a plane rotation on the right to eliminate the
* super-diagonal element (THETA) of the upper-bidiagonal matrix.
* Then use the result to estimate norm(X).
DELTA = SN2 * RHO
GAMBAR = - CS2 * RHO
RHS = PHI - DELTA * Z
ZBAR = RHS / GAMBAR
XNORM = SQRT( XXNORM + ZBAR **2 )
GAMMA = SQRT( GAMBAR**2 + THETA**2 )
CS2 = GAMBAR / GAMMA
SN2 = THETA / GAMMA
Z = RHS / GAMMA
XXNORM = XXNORM + Z**2
* Test for convergence.
* First, estimate the norm and condition of the matrix Abar,
* and the norms of rbar and Abar(transpose)*rbar.
ANORM = SQRT( BBNORM )
ACOND = ANORM * SQRT( DDNORM )
RES1 = PHIBAR**2
RES2 = RES2 + PSI**2
RNORM = SQRT( RES1 + RES2 )
ARNORM = ALFA * ABS( TAU )
* Now use these norms to estimate certain other quantities,
* some of which will be small near a solution.
TEST1 = RNORM / BNORM
TEST2 = ZERO
IF (RNORM .GT. ZERO) TEST2 = ARNORM / (ANORM * RNORM)
TEST3 = ONE / ACOND
T1 = TEST1 / (ONE + ANORM * XNORM / BNORM)
RTOL = BTOL + ATOL * ANORM * XNORM / BNORM
* The following tests guard against extremely small values of
* ATOL, BTOL or CTOL. (The user may have set any or all of
* the parameters ATOL, BTOL, CONLIM to zero.)
* The effect is equivalent to the normal tests using
* ATOL = RELPR, BTOL = RELPR, CONLIM = 1/RELPR.
T3 = ONE + TEST3
T2 = ONE + TEST2
T1 = ONE + T1
IF (ITN .GE. ITNLIM) ISTOP = 7
IF (T3 .LE. ONE ) ISTOP = 6
IF (T2 .LE. ONE ) ISTOP = 5
IF (T1 .LE. ONE ) ISTOP = 4
* Allow for tolerances set by the user.
IF (TEST3 .LE. CTOL) ISTOP = 3
IF (TEST2 .LE. ATOL) ISTOP = 2
IF (TEST1 .LE. RTOL) ISTOP = 1
* ==================================================================
* See if it is time to print something.
IF (NOUT .LE. 0 ) GO TO 600
IF (N .LE. 40 ) GO TO 400
IF (ITN .LE. 10 ) GO TO 400
IF (ITN .GE. ITNLIM-10) GO TO 400
IF (MOD(ITN,10) .EQ. 0 ) GO TO 400
IF (TEST3 .LE. 2.0*CTOL) GO TO 400
IF (TEST2 .LE. 10.0*ATOL) GO TO 400
IF (TEST1 .LE. 10.0*RTOL) GO TO 400
IF (ISTOP .NE. 0 ) GO TO 400
GO TO 600
* Print a line for this iteration.
400 IF (1 .EQ. 1) GO TO 600
C 400 WRITE(NOUT, 1500) ITN, X(1), RNORM, TEST1, TEST2, ANORM, ACOND
C IF (MOD(ITN,10) .EQ. 0) WRITE(NOUT, 1600)
* ==================================================================
* Stop if appropriate.
* The convergence criteria are required to be met on NCONV
* consecutive iterations, where NCONV is set below.
* Suggested value: NCONV = 1, 2 or 3.
600 IF (ISTOP .EQ. 0) NSTOP = 0
IF (ISTOP .EQ. 0) GO TO 100
NCONV = 1
NSTOP = NSTOP + 1
IF (NSTOP .LT. NCONV .AND. ITN .LT. ITNLIM) ISTOP = 0
IF (ISTOP .EQ. 0) GO TO 100
* ------------------------------------------------------------------
* End of iteration loop.
* ------------------------------------------------------------------
* Finish off the standard error estimates.
T = ONE
IF (M .GT. N ) T = M - N
IF (DAMPSQ .GT. ZERO) T = M
T = RNORM / SQRT( T )
DO 700 I = 1, N
SE(I) = T * SQRT( SE(I) )
700 CONTINUE
* Print the stopping condition.
800 IF (1 .EQ. 1) GO TO 900
C 800 IF (NOUT .GT. 0) THEN
C WRITE(NOUT, 2000) EXIT, ISTOP, ITN,
C $ EXIT, ANORM, ACOND,
C $ EXIT, RNORM, ARNORM,
C $ EXIT, BNORM, XNORM
C WRITE(NOUT, 3000) EXIT, MSG(ISTOP)
C END IF
900 RETURN
* ------------------------------------------------------------------
1000 FORMAT(// 1P, A, ' Least-squares solution of A*x = b'
$ / ' The matrix A has', I7, ' rows and', I7, ' columns'
$ / ' The damping parameter is DAMP =', E10.2
$ / ' ATOL =', E10.2, 15X, 'CONLIM =', E10.2
$ / ' BTOL =', E10.2, 15X, 'ITNLIM =', I10)
1200 FORMAT(// ' Itn x(1) Function',
$ ' Compatible LS Norm A Cond A' /)
1300 FORMAT(// ' Itn x(1) Function',
$ ' Compatible LS Norm Abar Cond Abar' /)
1500 FORMAT(1P, I6, 2E17.9, 4E10.2)
1600 FORMAT(1X)
2000 FORMAT(/ 1P, A, 6X, 'ISTOP =', I3, 16X, 'ITN =', I9
$ / A, 6X, 'ANORM =', E13.5, 6X, 'ACOND =', E13.5
$ / A, 6X, 'RNORM =', E13.5, 6X, 'ARNORM =', E13.5,
$ / A, 6X, 'BNORM =', E13.5, 6X, 'XNORM =', E13.5)
3000 FORMAT( A, 6X, A )
* ------------------------------------------------------------------
* End of LSQR
END
|