File: cqrdc.f

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (213 lines) | stat: -rw-r--r-- 7,337 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
      subroutine cqrdc(x,ldx,n,p,qraux,jpvt,work,job)
      integer ldx,n,p,job
      integer jpvt(1)
      complex x(ldx,1),qraux(1),work(1)
c
c     cqrdc uses householder transformations to compute the qr
c     factorization of an n by p matrix x.  column pivoting
c     based on the 2-norms of the reduced columns may be
c     performed at the users option.
c
c     on entry
c
c        x       complex(ldx,p), where ldx .ge. n.
c                x contains the matrix whose decomposition is to be
c                computed.
c
c        ldx     integer.
c                ldx is the leading dimension of the array x.
c
c        n       integer.
c                n is the number of rows of the matrix x.
c
c        p       integer.
c                p is the number of columns of the matrix x.
c
c        jpvt    integer(p).
c                jpvt contains integers that control the selection
c                of the pivot columns.  the k-th column x(k) of x
c                is placed in one of three classes according to the
c                value of jpvt(k).
c
c                   if jpvt(k) .gt. 0, then x(k) is an initial
c                                      column.
c
c                   if jpvt(k) .eq. 0, then x(k) is a free column.
c
c                   if jpvt(k) .lt. 0, then x(k) is a final column.
c
c                before the decomposition is computed, initial columns
c                are moved to the beginning of the array x and final
c                columns to the end.  both initial and final columns
c                are frozen in place during the computation and only
c                free columns are moved.  at the k-th stage of the
c                reduction, if x(k) is occupied by a free column
c                it is interchanged with the free column of largest
c                reduced norm.  jpvt is not referenced if
c                job .eq. 0.
c
c        work    complex(p).
c                work is a work array.  work is not referenced if
c                job .eq. 0.
c
c        job     integer.
c                job is an integer that initiates column pivoting.
c                if job .eq. 0, no pivoting is done.
c                if job .ne. 0, pivoting is done.
c
c     on return
c
c        x       x contains in its upper triangle the upper
c                triangular matrix r of the qr factorization.
c                below its diagonal x contains information from
c                which the unitary part of the decomposition
c                can be recovered.  note that if pivoting has
c                been requested, the decomposition is not that
c                of the original matrix x but that of x
c                with its columns permuted as described by jpvt.
c
c        qraux   complex(p).
c                qraux contains further information required to recover
c                the unitary part of the decomposition.
c
c        jpvt    jpvt(k) contains the index of the column of the
c                original matrix that has been interchanged into
c                the k-th column, if pivoting was requested.
c
c     linpack. this version dated 08/14/78 .
c     g.w. stewart, university of maryland, argonne national lab.
c
c     cqrdc uses the following functions and subprograms.
c
c     blas caxpy,cdotc,cscal,cswap,scnrm2
c     fortran abs,aimag,amax1,cabs,cmplx,csqrt,min0,real
c
c     internal variables
c
      integer j,jp,l,lp1,lup,maxj,pl,pu
      real maxnrm,scnrm2,tt
      complex cdotc,nrmxl,t
      logical negj,swapj
c
      complex csign,zdum,zdum1,zdum2
      real cabs1
      csign(zdum1,zdum2) = cabs(zdum1)*(zdum2/cabs(zdum2))
      cabs1(zdum) = abs(real(zdum)) + abs(aimag(zdum))
c
      pl = 1
      pu = 0
      if (job .eq. 0) go to 60
c
c        pivoting has been requested.  rearrange the columns
c        according to jpvt.
c
         do 20 j = 1, p
            swapj = jpvt(j) .gt. 0
            negj = jpvt(j) .lt. 0
            jpvt(j) = j
            if (negj) jpvt(j) = -j
            if (.not.swapj) go to 10
               if (j .ne. pl) call cswap(n,x(1,pl),1,x(1,j),1)
               jpvt(j) = jpvt(pl)
               jpvt(pl) = j
               pl = pl + 1
   10       continue
   20    continue
         pu = p
         do 50 jj = 1, p
            j = p - jj + 1
            if (jpvt(j) .ge. 0) go to 40
               jpvt(j) = -jpvt(j)
               if (j .eq. pu) go to 30
                  call cswap(n,x(1,pu),1,x(1,j),1)
                  jp = jpvt(pu)
                  jpvt(pu) = jpvt(j)
                  jpvt(j) = jp
   30          continue
               pu = pu - 1
   40       continue
   50    continue
   60 continue
c
c     compute the norms of the free columns.
c
      if (pu .lt. pl) go to 80
      do 70 j = pl, pu
         qraux(j) = cmplx(scnrm2(n,x(1,j),1),0.0e0)
         work(j) = qraux(j)
   70 continue
   80 continue
c
c     perform the householder reduction of x.
c
      lup = min0(n,p)
      do 200 l = 1, lup
         if (l .lt. pl .or. l .ge. pu) go to 120
c
c           locate the column of largest norm and bring it
c           into the pivot position.
c
            maxnrm = 0.0e0
            maxj = l
            do 100 j = l, pu
               if (real(qraux(j)) .le. maxnrm) go to 90
                  maxnrm = real(qraux(j))
                  maxj = j
   90          continue
  100       continue
            if (maxj .eq. l) go to 110
               call cswap(n,x(1,l),1,x(1,maxj),1)
               qraux(maxj) = qraux(l)
               work(maxj) = work(l)
               jp = jpvt(maxj)
               jpvt(maxj) = jpvt(l)
               jpvt(l) = jp
  110       continue
  120    continue
         qraux(l) = (0.0e0,0.0e0)
         if (l .eq. n) go to 190
c
c           compute the householder transformation for column l.
c
            nrmxl = cmplx(scnrm2(n-l+1,x(l,l),1),0.0e0)
            if (cabs1(nrmxl) .eq. 0.0e0) go to 180
               if (cabs1(x(l,l)) .ne. 0.0e0)
     *            nrmxl = csign(nrmxl,x(l,l))
               call cscal(n-l+1,(1.0e0,0.0e0)/nrmxl,x(l,l),1)
               x(l,l) = (1.0e0,0.0e0) + x(l,l)
c
c              apply the transformation to the remaining columns,
c              updating the norms.
c
               lp1 = l + 1
               if (p .lt. lp1) go to 170
               do 160 j = lp1, p
                  t = -cdotc(n-l+1,x(l,l),1,x(l,j),1)/x(l,l)
                  call caxpy(n-l+1,t,x(l,l),1,x(l,j),1)
                  if (j .lt. pl .or. j .gt. pu) go to 150
                  if (cabs1(qraux(j)) .eq. 0.0e0) go to 150
                     tt = 1.0e0 - (cabs(x(l,j))/real(qraux(j)))**2
                     tt = amax1(tt,0.0e0)
                     t = cmplx(tt,0.0e0)
                     tt = 1.0e0
     *                    + 0.05e0*tt*(real(qraux(j))/real(work(j)))**2
                     if (tt .eq. 1.0e0) go to 130
                        qraux(j) = qraux(j)*csqrt(t)
                     go to 140
  130                continue
                        qraux(j) = cmplx(scnrm2(n-l,x(l+1,j),1),0.0e0)
                        work(j) = qraux(j)
  140                continue
  150             continue
  160          continue
  170          continue
c
c              save the transformation.
c
               qraux(l) = x(l,l)
               x(l,l) = -nrmxl
  180       continue
  190    continue
  200 continue
      return
      end