File: dpoco.c

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (397 lines) | stat: -rw-r--r-- 12,645 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/* linpack/dpoco.f -- translated by f2c (version 20050501).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__1 = 1;

/*<       subroutine dpoco(a,lda,n,rcond,z,info) >*/
/* Subroutine */ int dpoco_(doublereal *a, integer *lda, integer *n, 
        doublereal *rcond, doublereal *z__, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double d_sign(doublereal *, doublereal *);

    /* Local variables */
    integer i__, j, k;
    doublereal s, t;
    integer kb;
    doublereal ek, sm, wk;
    integer jm1, kp1;
    doublereal wkm;
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
            integer *);
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
            integer *), dpofa_(doublereal *, integer *, integer *, integer *);
    extern doublereal dasum_(integer *, doublereal *, integer *);
    doublereal anorm;
    extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 
            integer *, doublereal *, integer *);
    doublereal ynorm;

/*<       integer lda,n,info >*/
/*<       double precision a(lda,1),z(1) >*/
/*<       double precision rcond >*/

/*     dpoco factors a double precision symmetric positive definite */
/*     matrix and estimates the condition of the matrix. */

/*     if  rcond  is not needed, dpofa is slightly faster. */
/*     to solve  a*x = b , follow dpoco by dposl. */
/*     to compute  inverse(a)*c , follow dpoco by dposl. */
/*     to compute  determinant(a) , follow dpoco by dpodi. */
/*     to compute  inverse(a) , follow dpoco by dpodi. */

/*     on entry */

/*        a       double precision(lda, n) */
/*                the symmetric matrix to be factored.  only the */
/*                diagonal and upper triangle are used. */

/*        lda     integer */
/*                the leading dimension of the array  a . */

/*        n       integer */
/*                the order of the matrix  a . */

/*     on return */

/*        a       an upper triangular matrix  r  so that  a = trans(r)*r */
/*                where  trans(r)  is the transpose. */
/*                the strict lower triangle is unaltered. */
/*                if  info .ne. 0 , the factorization is not complete. */

/*        rcond   double precision */
/*                an estimate of the reciprocal condition of  a . */
/*                for the system  a*x = b , relative perturbations */
/*                in  a  and  b  of size  epsilon  may cause */
/*                relative perturbations in  x  of size  epsilon/rcond . */
/*                if  rcond  is so small that the logical expression */
/*                           1.0 + rcond .eq. 1.0 */
/*                is true, then  a  may be singular to working */
/*                precision.  in particular,  rcond  is zero  if */
/*                exact singularity is detected or the estimate */
/*                underflows.  if info .ne. 0 , rcond is unchanged. */

/*        z       double precision(n) */
/*                a work vector whose contents are usually unimportant. */
/*                if  a  is close to a singular matrix, then  z  is */
/*                an approximate null vector in the sense that */
/*                norm(a*z) = rcond*norm(a)*norm(z) . */
/*                if  info .ne. 0 , z  is unchanged. */

/*        info    integer */
/*                = 0  for normal return. */
/*                = k  signals an error condition.  the leading minor */
/*                     of order  k  is not positive definite. */

/*     linpack.  this version dated 08/14/78 . */
/*     cleve moler, university of new mexico, argonne national lab. */

/*     subroutines and functions */

/*     linpack dpofa */
/*     blas daxpy,ddot,dscal,dasum */
/*     fortran dabs,dmax1,dreal,dsign */

/*     internal variables */

/*<       double precision ddot,ek,t,wk,wkm >*/
/*<       double precision anorm,s,dasum,sm,ynorm >*/
/*<       integer i,j,jm1,k,kb,kp1 >*/


/*     find norm of a using only upper half */

/*<       do 30 j = 1, n >*/
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --z__;

    /* Function Body */
    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
/*<          z(j) = dasum(j,a(1,j),1) >*/
        z__[j] = dasum_(&j, &a[j * a_dim1 + 1], &c__1);
/*<          jm1 = j - 1 >*/
        jm1 = j - 1;
/*<          if (jm1 .lt. 1) go to 20 >*/
        if (jm1 < 1) {
            goto L20;
        }
/*<          do 10 i = 1, jm1 >*/
        i__2 = jm1;
        for (i__ = 1; i__ <= i__2; ++i__) {
/*<             z(i) = z(i) + dabs(a(i,j)) >*/
            z__[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
/*<    10    continue >*/
/* L10: */
        }
/*<    20    continue >*/
L20:
/*<    30 continue >*/
/* L30: */
        ;
    }
/*<       anorm = 0.0d0 >*/
    anorm = 0.;
/*<       do 40 j = 1, n >*/
    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
/*<          anorm = dmax1(anorm,z(j)) >*/
/* Computing MAX */
        d__1 = anorm, d__2 = z__[j];
        anorm = max(d__1,d__2);
/*<    40 continue >*/
/* L40: */
    }

/*     factor */

/*<       call dpofa(a,lda,n,info) >*/
    dpofa_(&a[a_offset], lda, n, info);
/*<       if (info .ne. 0) go to 180 >*/
    if (*info != 0) {
        goto L180;
    }

/*        rcond = 1/(norm(a)*(estimate of norm(inverse(a)))) . */
/*        estimate = norm(z)/norm(y) where  a*z = y  and  a*y = e . */
/*        the components of  e  are chosen to cause maximum local */
/*        growth in the elements of w  where  trans(r)*w = e . */
/*        the vectors are frequently rescaled to avoid overflow. */

/*        solve trans(r)*w = e */

/*<          ek = 1.0d0 >*/
    ek = 1.;
/*<          do 50 j = 1, n >*/
    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
/*<             z(j) = 0.0d0 >*/
        z__[j] = 0.;
/*<    50    continue >*/
/* L50: */
    }
/*<          do 110 k = 1, n >*/
    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {
/*<             if (z(k) .ne. 0.0d0) ek = dsign(ek,-z(k)) >*/
        if (z__[k] != 0.) {
            d__1 = -z__[k];
            ek = d_sign(&ek, &d__1);
        }
/*<             if (dabs(ek-z(k)) .le. a(k,k)) go to 60 >*/
        if ((d__1 = ek - z__[k], abs(d__1)) <= a[k + k * a_dim1]) {
            goto L60;
        }
/*<                s = a(k,k)/dabs(ek-z(k)) >*/
        s = a[k + k * a_dim1] / (d__1 = ek - z__[k], abs(d__1));
/*<                call dscal(n,s,z,1) >*/
        dscal_(n, &s, &z__[1], &c__1);
/*<                ek = s*ek >*/
        ek = s * ek;
/*<    60       continue >*/
L60:
/*<             wk = ek - z(k) >*/
        wk = ek - z__[k];
/*<             wkm = -ek - z(k) >*/
        wkm = -ek - z__[k];
/*<             s = dabs(wk) >*/
        s = abs(wk);
/*<             sm = dabs(wkm) >*/
        sm = abs(wkm);
/*<             wk = wk/a(k,k) >*/
        wk /= a[k + k * a_dim1];
/*<             wkm = wkm/a(k,k) >*/
        wkm /= a[k + k * a_dim1];
/*<             kp1 = k + 1 >*/
        kp1 = k + 1;
/*<             if (kp1 .gt. n) go to 100 >*/
        if (kp1 > *n) {
            goto L100;
        }
/*<                do 70 j = kp1, n >*/
        i__2 = *n;
        for (j = kp1; j <= i__2; ++j) {
/*<                   sm = sm + dabs(z(j)+wkm*a(k,j)) >*/
            sm += (d__1 = z__[j] + wkm * a[k + j * a_dim1], abs(d__1));
/*<                   z(j) = z(j) + wk*a(k,j) >*/
            z__[j] += wk * a[k + j * a_dim1];
/*<                   s = s + dabs(z(j)) >*/
            s += (d__1 = z__[j], abs(d__1));
/*<    70          continue >*/
/* L70: */
        }
/*<                if (s .ge. sm) go to 90 >*/
        if (s >= sm) {
            goto L90;
        }
/*<                   t = wkm - wk >*/
        t = wkm - wk;
/*<                   wk = wkm >*/
        wk = wkm;
/*<                   do 80 j = kp1, n >*/
        i__2 = *n;
        for (j = kp1; j <= i__2; ++j) {
/*<                      z(j) = z(j) + t*a(k,j) >*/
            z__[j] += t * a[k + j * a_dim1];
/*<    80             continue >*/
/* L80: */
        }
/*<    90          continue >*/
L90:
/*<   100       continue >*/
L100:
/*<             z(k) = wk >*/
        z__[k] = wk;
/*<   110    continue >*/
/* L110: */
    }
/*<          s = 1.0d0/dasum(n,z,1) >*/
    s = 1. / dasum_(n, &z__[1], &c__1);
/*<          call dscal(n,s,z,1) >*/
    dscal_(n, &s, &z__[1], &c__1);

/*        solve r*y = w */

/*<          do 130 kb = 1, n >*/
    i__1 = *n;
    for (kb = 1; kb <= i__1; ++kb) {
/*<             k = n + 1 - kb >*/
        k = *n + 1 - kb;
/*<             if (dabs(z(k)) .le. a(k,k)) go to 120 >*/
        if ((d__1 = z__[k], abs(d__1)) <= a[k + k * a_dim1]) {
            goto L120;
        }
/*<                s = a(k,k)/dabs(z(k)) >*/
        s = a[k + k * a_dim1] / (d__1 = z__[k], abs(d__1));
/*<                call dscal(n,s,z,1) >*/
        dscal_(n, &s, &z__[1], &c__1);
/*<   120       continue >*/
L120:
/*<             z(k) = z(k)/a(k,k) >*/
        z__[k] /= a[k + k * a_dim1];
/*<             t = -z(k) >*/
        t = -z__[k];
/*<             call daxpy(k-1,t,a(1,k),1,z(1),1) >*/
        i__2 = k - 1;
        daxpy_(&i__2, &t, &a[k * a_dim1 + 1], &c__1, &z__[1], &c__1);
/*<   130    continue >*/
/* L130: */
    }
/*<          s = 1.0d0/dasum(n,z,1) >*/
    s = 1. / dasum_(n, &z__[1], &c__1);
/*<          call dscal(n,s,z,1) >*/
    dscal_(n, &s, &z__[1], &c__1);

/*<          ynorm = 1.0d0 >*/
    ynorm = 1.;

/*        solve trans(r)*v = y */

/*<          do 150 k = 1, n >*/
    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {
/*<             z(k) = z(k) - ddot(k-1,a(1,k),1,z(1),1) >*/
        i__2 = k - 1;
        z__[k] -= ddot_(&i__2, &a[k * a_dim1 + 1], &c__1, &z__[1], &c__1);
/*<             if (dabs(z(k)) .le. a(k,k)) go to 140 >*/
        if ((d__1 = z__[k], abs(d__1)) <= a[k + k * a_dim1]) {
            goto L140;
        }
/*<                s = a(k,k)/dabs(z(k)) >*/
        s = a[k + k * a_dim1] / (d__1 = z__[k], abs(d__1));
/*<                call dscal(n,s,z,1) >*/
        dscal_(n, &s, &z__[1], &c__1);
/*<                ynorm = s*ynorm >*/
        ynorm = s * ynorm;
/*<   140       continue >*/
L140:
/*<             z(k) = z(k)/a(k,k) >*/
        z__[k] /= a[k + k * a_dim1];
/*<   150    continue >*/
/* L150: */
    }
/*<          s = 1.0d0/dasum(n,z,1) >*/
    s = 1. / dasum_(n, &z__[1], &c__1);
/*<          call dscal(n,s,z,1) >*/
    dscal_(n, &s, &z__[1], &c__1);
/*<          ynorm = s*ynorm >*/
    ynorm = s * ynorm;

/*        solve r*z = v */

/*<          do 170 kb = 1, n >*/
    i__1 = *n;
    for (kb = 1; kb <= i__1; ++kb) {
/*<             k = n + 1 - kb >*/
        k = *n + 1 - kb;
/*<             if (dabs(z(k)) .le. a(k,k)) go to 160 >*/
        if ((d__1 = z__[k], abs(d__1)) <= a[k + k * a_dim1]) {
            goto L160;
        }
/*<                s = a(k,k)/dabs(z(k)) >*/
        s = a[k + k * a_dim1] / (d__1 = z__[k], abs(d__1));
/*<                call dscal(n,s,z,1) >*/
        dscal_(n, &s, &z__[1], &c__1);
/*<                ynorm = s*ynorm >*/
        ynorm = s * ynorm;
/*<   160       continue >*/
L160:
/*<             z(k) = z(k)/a(k,k) >*/
        z__[k] /= a[k + k * a_dim1];
/*<             t = -z(k) >*/
        t = -z__[k];
/*<             call daxpy(k-1,t,a(1,k),1,z(1),1) >*/
        i__2 = k - 1;
        daxpy_(&i__2, &t, &a[k * a_dim1 + 1], &c__1, &z__[1], &c__1);
/*<   170    continue >*/
/* L170: */
    }
/*        make znorm = 1.0 */
/*<          s = 1.0d0/dasum(n,z,1) >*/
    s = 1. / dasum_(n, &z__[1], &c__1);
/*<          call dscal(n,s,z,1) >*/
    dscal_(n, &s, &z__[1], &c__1);
/*<          ynorm = s*ynorm >*/
    ynorm = s * ynorm;

/*<          if (anorm .ne. 0.0d0) rcond = ynorm/anorm >*/
    if (anorm != 0.) {
        *rcond = ynorm / anorm;
    }
/*<          if (anorm .eq. 0.0d0) rcond = 0.0d0 >*/
    if (anorm == 0.) {
        *rcond = 0.;
    }
/*<   180 continue >*/
L180:
/*<       return >*/
    return 0;
/*<       end >*/
} /* dpoco_ */

#ifdef __cplusplus
        }
#endif