1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
subroutine dpoco(a,lda,n,rcond,z,info)
integer lda,n,info
double precision a(lda,1),z(1)
double precision rcond
c
c dpoco factors a double precision symmetric positive definite
c matrix and estimates the condition of the matrix.
c
c if rcond is not needed, dpofa is slightly faster.
c to solve a*x = b , follow dpoco by dposl.
c to compute inverse(a)*c , follow dpoco by dposl.
c to compute determinant(a) , follow dpoco by dpodi.
c to compute inverse(a) , follow dpoco by dpodi.
c
c on entry
c
c a double precision(lda, n)
c the symmetric matrix to be factored. only the
c diagonal and upper triangle are used.
c
c lda integer
c the leading dimension of the array a .
c
c n integer
c the order of the matrix a .
c
c on return
c
c a an upper triangular matrix r so that a = trans(r)*r
c where trans(r) is the transpose.
c the strict lower triangle is unaltered.
c if info .ne. 0 , the factorization is not complete.
c
c rcond double precision
c an estimate of the reciprocal condition of a .
c for the system a*x = b , relative perturbations
c in a and b of size epsilon may cause
c relative perturbations in x of size epsilon/rcond .
c if rcond is so small that the logical expression
c 1.0 + rcond .eq. 1.0
c is true, then a may be singular to working
c precision. in particular, rcond is zero if
c exact singularity is detected or the estimate
c underflows. if info .ne. 0 , rcond is unchanged.
c
c z double precision(n)
c a work vector whose contents are usually unimportant.
c if a is close to a singular matrix, then z is
c an approximate null vector in the sense that
c norm(a*z) = rcond*norm(a)*norm(z) .
c if info .ne. 0 , z is unchanged.
c
c info integer
c = 0 for normal return.
c = k signals an error condition. the leading minor
c of order k is not positive definite.
c
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c subroutines and functions
c
c linpack dpofa
c blas daxpy,ddot,dscal,dasum
c fortran dabs,dmax1,dreal,dsign
c
c internal variables
c
double precision ddot,ek,t,wk,wkm
double precision anorm,s,dasum,sm,ynorm
integer i,j,jm1,k,kb,kp1
c
c
c find norm of a using only upper half
c
do 30 j = 1, n
z(j) = dasum(j,a(1,j),1)
jm1 = j - 1
if (jm1 .lt. 1) go to 20
do 10 i = 1, jm1
z(i) = z(i) + dabs(a(i,j))
10 continue
20 continue
30 continue
anorm = 0.0d0
do 40 j = 1, n
anorm = dmax1(anorm,z(j))
40 continue
c
c factor
c
call dpofa(a,lda,n,info)
if (info .ne. 0) go to 180
c
c rcond = 1/(norm(a)*(estimate of norm(inverse(a)))) .
c estimate = norm(z)/norm(y) where a*z = y and a*y = e .
c the components of e are chosen to cause maximum local
c growth in the elements of w where trans(r)*w = e .
c the vectors are frequently rescaled to avoid overflow.
c
c solve trans(r)*w = e
c
ek = 1.0d0
do 50 j = 1, n
z(j) = 0.0d0
50 continue
do 110 k = 1, n
if (z(k) .ne. 0.0d0) ek = dsign(ek,-z(k))
if (dabs(ek-z(k)) .le. a(k,k)) go to 60
s = a(k,k)/dabs(ek-z(k))
call dscal(n,s,z,1)
ek = s*ek
60 continue
wk = ek - z(k)
wkm = -ek - z(k)
s = dabs(wk)
sm = dabs(wkm)
wk = wk/a(k,k)
wkm = wkm/a(k,k)
kp1 = k + 1
if (kp1 .gt. n) go to 100
do 70 j = kp1, n
sm = sm + dabs(z(j)+wkm*a(k,j))
z(j) = z(j) + wk*a(k,j)
s = s + dabs(z(j))
70 continue
if (s .ge. sm) go to 90
t = wkm - wk
wk = wkm
do 80 j = kp1, n
z(j) = z(j) + t*a(k,j)
80 continue
90 continue
100 continue
z(k) = wk
110 continue
s = 1.0d0/dasum(n,z,1)
call dscal(n,s,z,1)
c
c solve r*y = w
c
do 130 kb = 1, n
k = n + 1 - kb
if (dabs(z(k)) .le. a(k,k)) go to 120
s = a(k,k)/dabs(z(k))
call dscal(n,s,z,1)
120 continue
z(k) = z(k)/a(k,k)
t = -z(k)
call daxpy(k-1,t,a(1,k),1,z(1),1)
130 continue
s = 1.0d0/dasum(n,z,1)
call dscal(n,s,z,1)
c
ynorm = 1.0d0
c
c solve trans(r)*v = y
c
do 150 k = 1, n
z(k) = z(k) - ddot(k-1,a(1,k),1,z(1),1)
if (dabs(z(k)) .le. a(k,k)) go to 140
s = a(k,k)/dabs(z(k))
call dscal(n,s,z,1)
ynorm = s*ynorm
140 continue
z(k) = z(k)/a(k,k)
150 continue
s = 1.0d0/dasum(n,z,1)
call dscal(n,s,z,1)
ynorm = s*ynorm
c
c solve r*z = v
c
do 170 kb = 1, n
k = n + 1 - kb
if (dabs(z(k)) .le. a(k,k)) go to 160
s = a(k,k)/dabs(z(k))
call dscal(n,s,z,1)
ynorm = s*ynorm
160 continue
z(k) = z(k)/a(k,k)
t = -z(k)
call daxpy(k-1,t,a(1,k),1,z(1),1)
170 continue
c make znorm = 1.0
s = 1.0d0/dasum(n,z,1)
call dscal(n,s,z,1)
ynorm = s*ynorm
c
if (anorm .ne. 0.0d0) rcond = ynorm/anorm
if (anorm .eq. 0.0d0) rcond = 0.0d0
180 continue
return
end
|