1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
/* linpack/dqrdc.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
/*< subroutine dqrdc(x,ldx,n,p,qraux,jpvt,work,job) >*/
/* Subroutine */ int dqrdc_(doublereal *x, integer *ldx, integer *n, integer *
p, doublereal *qraux, integer *jpvt, doublereal *work, integer *job)
{
/* System generated locals */
integer x_dim1, x_offset, i__1, i__2, i__3;
doublereal d__1, d__2;
/* Builtin functions */
double d_sign(doublereal *, doublereal *), sqrt(doublereal);
/* Local variables */
integer j, l;
doublereal t;
integer jj, jp, pl, pu;
doublereal tt;
integer lp1, lup;
logical negj;
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
integer *);
integer maxj;
extern doublereal dnrm2_(integer *, doublereal *, integer *);
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *), dswap_(integer *, doublereal *, integer *, doublereal
*, integer *);
logical swapj;
extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *);
doublereal nrmxl, maxnrm;
/*< integer ldx,n,p,job >*/
/*< integer jpvt(1) >*/
/*< double precision x(ldx,1),qraux(1),work(1) >*/
/* dqrdc uses householder transformations to compute the qr */
/* factorization of an n by p matrix x. column pivoting */
/* based on the 2-norms of the reduced columns may be */
/* performed at the users option. */
/* on entry */
/* x double precision(ldx,p), where ldx .ge. n. */
/* x contains the matrix whose decomposition is to be */
/* computed. */
/* ldx integer. */
/* ldx is the leading dimension of the array x. */
/* n integer. */
/* n is the number of rows of the matrix x. */
/* p integer. */
/* p is the number of columns of the matrix x. */
/* jpvt integer(p). */
/* jpvt contains integers that control the selection */
/* of the pivot columns. the k-th column x(k) of x */
/* is placed in one of three classes according to the */
/* value of jpvt(k). */
/* if jpvt(k) .gt. 0, then x(k) is an initial */
/* column. */
/* if jpvt(k) .eq. 0, then x(k) is a free column. */
/* if jpvt(k) .lt. 0, then x(k) is a final column. */
/* before the decomposition is computed, initial columns */
/* are moved to the beginning of the array x and final */
/* columns to the end. both initial and final columns */
/* are frozen in place during the computation and only */
/* free columns are moved. at the k-th stage of the */
/* reduction, if x(k) is occupied by a free column */
/* it is interchanged with the free column of largest */
/* reduced norm. jpvt is not referenced if */
/* job .eq. 0. */
/* work double precision(p). */
/* work is a work array. work is not referenced if */
/* job .eq. 0. */
/* job integer. */
/* job is an integer that initiates column pivoting. */
/* if job .eq. 0, no pivoting is done. */
/* if job .ne. 0, pivoting is done. */
/* on return */
/* x x contains in its upper triangle the upper */
/* triangular matrix r of the qr factorization. */
/* below its diagonal x contains information from */
/* which the orthogonal part of the decomposition */
/* can be recovered. note that if pivoting has */
/* been requested, the decomposition is not that */
/* of the original matrix x but that of x */
/* with its columns permuted as described by jpvt. */
/* qraux double precision(p). */
/* qraux contains further information required to recover */
/* the orthogonal part of the decomposition. */
/* jpvt jpvt(k) contains the index of the column of the */
/* original matrix that has been interchanged into */
/* the k-th column, if pivoting was requested. */
/* linpack. this version dated 08/14/78 . */
/* g.w. stewart, university of maryland, argonne national lab. */
/* dqrdc uses the following functions and subprograms. */
/* blas daxpy,ddot,dscal,dswap,dnrm2 */
/* fortran dabs,dmax1,min0,dsqrt */
/* internal variables */
/*< integer j,jp,l,lp1,lup,maxj,pl,pu >*/
/*< double precision maxnrm,dnrm2,tt >*/
/*< double precision ddot,nrmxl,t >*/
/*< logical negj,swapj >*/
/*< pl = 1 >*/
/* Parameter adjustments */
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
--qraux;
--jpvt;
--work;
/* Function Body */
pl = 1;
/*< pu = 0 >*/
pu = 0;
/*< if (job .eq. 0) go to 60 >*/
if (*job == 0) {
goto L60;
}
/* pivoting has been requested. rearrange the columns */
/* according to jpvt. */
/*< do 20 j = 1, p >*/
i__1 = *p;
for (j = 1; j <= i__1; ++j) {
/*< swapj = jpvt(j) .gt. 0 >*/
swapj = jpvt[j] > 0;
/*< negj = jpvt(j) .lt. 0 >*/
negj = jpvt[j] < 0;
/*< jpvt(j) = j >*/
jpvt[j] = j;
/*< if (negj) jpvt(j) = -j >*/
if (negj) {
jpvt[j] = -j;
}
/*< if (.not.swapj) go to 10 >*/
if (! swapj) {
goto L10;
}
/*< if (j .ne. pl) call dswap(n,x(1,pl),1,x(1,j),1) >*/
if (j != pl) {
dswap_(n, &x[pl * x_dim1 + 1], &c__1, &x[j * x_dim1 + 1], &c__1);
}
/*< jpvt(j) = jpvt(pl) >*/
jpvt[j] = jpvt[pl];
/*< jpvt(pl) = j >*/
jpvt[pl] = j;
/*< pl = pl + 1 >*/
++pl;
/*< 10 continue >*/
L10:
/*< 20 continue >*/
/* L20: */
;
}
/*< pu = p >*/
pu = *p;
/*< do 50 jj = 1, p >*/
i__1 = *p;
for (jj = 1; jj <= i__1; ++jj) {
/*< j = p - jj + 1 >*/
j = *p - jj + 1;
/*< if (jpvt(j) .ge. 0) go to 40 >*/
if (jpvt[j] >= 0) {
goto L40;
}
/*< jpvt(j) = -jpvt(j) >*/
jpvt[j] = -jpvt[j];
/*< if (j .eq. pu) go to 30 >*/
if (j == pu) {
goto L30;
}
/*< call dswap(n,x(1,pu),1,x(1,j),1) >*/
dswap_(n, &x[pu * x_dim1 + 1], &c__1, &x[j * x_dim1 + 1], &c__1);
/*< jp = jpvt(pu) >*/
jp = jpvt[pu];
/*< jpvt(pu) = jpvt(j) >*/
jpvt[pu] = jpvt[j];
/*< jpvt(j) = jp >*/
jpvt[j] = jp;
/*< 30 continue >*/
L30:
/*< pu = pu - 1 >*/
--pu;
/*< 40 continue >*/
L40:
/*< 50 continue >*/
/* L50: */
;
}
/*< 60 continue >*/
L60:
/* compute the norms of the free columns. */
/*< if (pu .lt. pl) go to 80 >*/
if (pu < pl) {
goto L80;
}
/*< do 70 j = pl, pu >*/
i__1 = pu;
for (j = pl; j <= i__1; ++j) {
/*< qraux(j) = dnrm2(n,x(1,j),1) >*/
qraux[j] = dnrm2_(n, &x[j * x_dim1 + 1], &c__1);
/*< work(j) = qraux(j) >*/
work[j] = qraux[j];
/*< 70 continue >*/
/* L70: */
}
/*< 80 continue >*/
L80:
/* perform the householder reduction of x. */
/*< lup = min0(n,p) >*/
lup = min(*n,*p);
/*< do 200 l = 1, lup >*/
i__1 = lup;
for (l = 1; l <= i__1; ++l) {
/*< if (l .lt. pl .or. l .ge. pu) go to 120 >*/
if (l < pl || l >= pu) {
goto L120;
}
/* locate the column of largest norm and bring it */
/* into the pivot position. */
/*< maxnrm = 0.0d0 >*/
maxnrm = 0.;
/*< maxj = l >*/
maxj = l;
/*< do 100 j = l, pu >*/
i__2 = pu;
for (j = l; j <= i__2; ++j) {
/*< if (qraux(j) .le. maxnrm) go to 90 >*/
if (qraux[j] <= maxnrm) {
goto L90;
}
/*< maxnrm = qraux(j) >*/
maxnrm = qraux[j];
/*< maxj = j >*/
maxj = j;
/*< 90 continue >*/
L90:
/*< 100 continue >*/
/* L100: */
;
}
/*< if (maxj .eq. l) go to 110 >*/
if (maxj == l) {
goto L110;
}
/*< call dswap(n,x(1,l),1,x(1,maxj),1) >*/
dswap_(n, &x[l * x_dim1 + 1], &c__1, &x[maxj * x_dim1 + 1], &c__1);
/*< qraux(maxj) = qraux(l) >*/
qraux[maxj] = qraux[l];
/*< work(maxj) = work(l) >*/
work[maxj] = work[l];
/*< jp = jpvt(maxj) >*/
jp = jpvt[maxj];
/*< jpvt(maxj) = jpvt(l) >*/
jpvt[maxj] = jpvt[l];
/*< jpvt(l) = jp >*/
jpvt[l] = jp;
/*< 110 continue >*/
L110:
/*< 120 continue >*/
L120:
/*< qraux(l) = 0.0d0 >*/
qraux[l] = 0.;
/*< if (l .eq. n) go to 190 >*/
if (l == *n) {
goto L190;
}
/* compute the householder transformation for column l. */
/*< nrmxl = dnrm2(n-l+1,x(l,l),1) >*/
i__2 = *n - l + 1;
nrmxl = dnrm2_(&i__2, &x[l + l * x_dim1], &c__1);
/*< if (nrmxl .eq. 0.0d0) go to 180 >*/
if (nrmxl == 0.) {
goto L180;
}
/*< if (x(l,l) .ne. 0.0d0) nrmxl = dsign(nrmxl,x(l,l)) >*/
if (x[l + l * x_dim1] != 0.) {
nrmxl = d_sign(&nrmxl, &x[l + l * x_dim1]);
}
/*< call dscal(n-l+1,1.0d0/nrmxl,x(l,l),1) >*/
i__2 = *n - l + 1;
d__1 = 1. / nrmxl;
dscal_(&i__2, &d__1, &x[l + l * x_dim1], &c__1);
/*< x(l,l) = 1.0d0 + x(l,l) >*/
x[l + l * x_dim1] += 1.;
/* apply the transformation to the remaining columns, */
/* updating the norms. */
/*< lp1 = l + 1 >*/
lp1 = l + 1;
/*< if (p .lt. lp1) go to 170 >*/
if (*p < lp1) {
goto L170;
}
/*< do 160 j = lp1, p >*/
i__2 = *p;
for (j = lp1; j <= i__2; ++j) {
/*< t = -ddot(n-l+1,x(l,l),1,x(l,j),1)/x(l,l) >*/
i__3 = *n - l + 1;
t = -ddot_(&i__3, &x[l + l * x_dim1], &c__1, &x[l + j * x_dim1], &
c__1) / x[l + l * x_dim1];
/*< call daxpy(n-l+1,t,x(l,l),1,x(l,j),1) >*/
i__3 = *n - l + 1;
daxpy_(&i__3, &t, &x[l + l * x_dim1], &c__1, &x[l + j * x_dim1], &
c__1);
/*< if (j .lt. pl .or. j .gt. pu) go to 150 >*/
if (j < pl || j > pu) {
goto L150;
}
/*< if (qraux(j) .eq. 0.0d0) go to 150 >*/
if (qraux[j] == 0.) {
goto L150;
}
/*< tt = 1.0d0 - (dabs(x(l,j))/qraux(j))**2 >*/
/* Computing 2nd power */
d__2 = (d__1 = x[l + j * x_dim1], abs(d__1)) / qraux[j];
tt = 1. - d__2 * d__2;
/*< tt = dmax1(tt,0.0d0) >*/
tt = max(tt,0.);
/*< t = tt >*/
t = tt;
/*< tt = 1.0d0 + 0.05d0*tt*(qraux(j)/work(j))**2 >*/
/* Computing 2nd power */
d__1 = qraux[j] / work[j];
tt = tt * .05 * (d__1 * d__1) + 1.;
/*< if (tt .eq. 1.0d0) go to 130 >*/
if (tt == 1.) {
goto L130;
}
/*< qraux(j) = qraux(j)*dsqrt(t) >*/
qraux[j] *= sqrt(t);
/*< go to 140 >*/
goto L140;
/*< 130 continue >*/
L130:
/*< qraux(j) = dnrm2(n-l,x(l+1,j),1) >*/
i__3 = *n - l;
qraux[j] = dnrm2_(&i__3, &x[l + 1 + j * x_dim1], &c__1);
/*< work(j) = qraux(j) >*/
work[j] = qraux[j];
/*< 140 continue >*/
L140:
/*< 150 continue >*/
L150:
/*< 160 continue >*/
/* L160: */
;
}
/*< 170 continue >*/
L170:
/* save the transformation. */
/*< qraux(l) = x(l,l) >*/
qraux[l] = x[l + l * x_dim1];
/*< x(l,l) = -nrmxl >*/
x[l + l * x_dim1] = -nrmxl;
/*< 180 continue >*/
L180:
/*< 190 continue >*/
L190:
/*< 200 continue >*/
/* L200: */
;
}
/*< return >*/
return 0;
/*< end >*/
} /* dqrdc_ */
#ifdef __cplusplus
}
#endif
|