File: dqrsl.f

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (274 lines) | stat: -rw-r--r-- 9,058 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
      subroutine dqrsl(x,ldx,n,k,qraux,y,qy,qty,b,rsd,xb,job,info)
      integer ldx,n,k,job,info
      double precision x(ldx,1),qraux(1),y(1),qy(1),qty(1),b(1),rsd(1),
     *                 xb(1)
c
c     dqrsl applies the output of dqrdc to compute coordinate
c     transformations, projections, and least squares solutions.
c     for k .le. min(n,p), let xk be the matrix
c
c            xk = (x(jpvt(1)),x(jpvt(2)), ... ,x(jpvt(k)))
c
c     formed from columns jpvt(1), ... ,jpvt(k) of the original
c     n x p matrix x that was input to dqrdc (if no pivoting was
c     done, xk consists of the first k columns of x in their
c     original order).  dqrdc produces a factored orthogonal matrix q
c     and an upper triangular matrix r such that
c
c              xk = q * (r)
c                       (0)
c
c     this information is contained in coded form in the arrays
c     x and qraux.
c
c     on entry
c
c        x      double precision(ldx,p).
c               x contains the output of dqrdc.
c
c        ldx    integer.
c               ldx is the leading dimension of the array x.
c
c        n      integer.
c               n is the number of rows of the matrix xk.  it must
c               have the same value as n in dqrdc.
c
c        k      integer.
c               k is the number of columns of the matrix xk.  k
c               must nnot be greater than min(n,p), where p is the
c               same as in the calling sequence to dqrdc.
c
c        qraux  double precision(p).
c               qraux contains the auxiliary output from dqrdc.
c
c        y      double precision(n)
c               y contains an n-vector that is to be manipulated
c               by dqrsl.
c
c        job    integer.
c               job specifies what is to be computed.  job has
c               the decimal expansion abcde, with the following
c               meaning.
c
c                    if a.ne.0, compute qy.
c                    if b,c,d, or e .ne. 0, compute qty.
c                    if c.ne.0, compute b.
c                    if d.ne.0, compute rsd.
c                    if e.ne.0, compute xb.
c
c               note that a request to compute b, rsd, or xb
c               automatically triggers the computation of qty, for
c               which an array must be provided in the calling
c               sequence.
c
c     on return
c
c        qy     double precision(n).
c               qy conntains q*y, if its computation has been
c               requested.
c
c        qty    double precision(n).
c               qty contains trans(q)*y, if its computation has
c               been requested.  here trans(q) is the
c               transpose of the matrix q.
c
c        b      double precision(k)
c               b contains the solution of the least squares problem
c
c                    minimize norm2(y - xk*b),
c
c               if its computation has been requested.  (note that
c               if pivoting was requested in dqrdc, the j-th
c               component of b will be associated with column jpvt(j)
c               of the original matrix x that was input into dqrdc.)
c
c        rsd    double precision(n).
c               rsd contains the least squares residual y - xk*b,
c               if its computation has been requested.  rsd is
c               also the orthogonal projection of y onto the
c               orthogonal complement of the column space of xk.
c
c        xb     double precision(n).
c               xb contains the least squares approximation xk*b,
c               if its computation has been requested.  xb is also
c               the orthogonal projection of y onto the column space
c               of x.
c
c        info   integer.
c               info is zero unless the computation of b has
c               been requested and r is exactly singular.  in
c               this case, info is the index of the first zero
c               diagonal element of r and b is left unaltered.
c
c     the parameters qy, qty, b, rsd, and xb are not referenced
c     if their computation is not requested and in this case
c     can be replaced by dummy variables in the calling program.
c     to save storage, the user may in some cases use the same
c     array for different parameters in the calling sequence.  a
c     frequently occurring example is when one wishes to compute
c     any of b, rsd, or xb and does not need y or qty.  in this
c     case one may identify y, qty, and one of b, rsd, or xb, while
c     providing separate arrays for anything else that is to be
c     computed.  thus the calling sequence
c
c          call dqrsl(x,ldx,n,k,qraux,y,dum,y,b,y,dum,110,info)
c
c     will result in the computation of b and rsd, with rsd
c     overwriting y.  more generally, each item in the following
c     list contains groups of permissible identifications for
c     a single callinng sequence.
c
c          1. (y,qty,b) (rsd) (xb) (qy)
c
c          2. (y,qty,rsd) (b) (xb) (qy)
c
c          3. (y,qty,xb) (b) (rsd) (qy)
c
c          4. (y,qy) (qty,b) (rsd) (xb)
c
c          5. (y,qy) (qty,rsd) (b) (xb)
c
c          6. (y,qy) (qty,xb) (b) (rsd)
c
c     in any group the value returned in the array allocated to
c     the group corresponds to the last member of the group.
c
c     linpack. this version dated 08/14/78 .
c     g.w. stewart, university of maryland, argonne national lab.
c
c     dqrsl uses the following functions and subprograms.
c
c     blas daxpy,dcopy,ddot
c     fortran dabs,min0,mod
c
c     internal variables
c
      integer i,j,jj,ju,kp1
      double precision ddot,t,temp
      logical cb,cqy,cqty,cr,cxb
c
c
c     set info flag.
c
      info = 0
c
c     determine what is to be computed.
c
      cqy = job/10000 .ne. 0
      cqty = mod(job,10000) .ne. 0
      cb = mod(job,1000)/100 .ne. 0
      cr = mod(job,100)/10 .ne. 0
      cxb = mod(job,10) .ne. 0
      ju = min0(k,n-1)
c
c     special action when n=1.
c
      if (ju .ne. 0) go to 40
         if (cqy) qy(1) = y(1)
         if (cqty) qty(1) = y(1)
         if (cxb) xb(1) = y(1)
         if (.not.cb) go to 30
            if (x(1,1) .ne. 0.0d0) go to 10
               info = 1
            go to 20
   10       continue
               b(1) = y(1)/x(1,1)
   20       continue
   30    continue
         if (cr) rsd(1) = 0.0d0
      go to 250
   40 continue
c
c        set up to compute qy or qty.
c
         if (cqy) call dcopy(n,y,1,qy,1)
         if (cqty) call dcopy(n,y,1,qty,1)
         if (.not.cqy) go to 70
c
c           compute qy.
c
            do 60 jj = 1, ju
               j = ju - jj + 1
               if (qraux(j) .eq. 0.0d0) go to 50
                  temp = x(j,j)
                  x(j,j) = qraux(j)
                  t = -ddot(n-j+1,x(j,j),1,qy(j),1)/x(j,j)
                  call daxpy(n-j+1,t,x(j,j),1,qy(j),1)
                  x(j,j) = temp
   50          continue
   60       continue
   70    continue
         if (.not.cqty) go to 100
c
c           compute trans(q)*y.
c
            do 90 j = 1, ju
               if (qraux(j) .eq. 0.0d0) go to 80
                  temp = x(j,j)
                  x(j,j) = qraux(j)
                  t = -ddot(n-j+1,x(j,j),1,qty(j),1)/x(j,j)
                  call daxpy(n-j+1,t,x(j,j),1,qty(j),1)
                  x(j,j) = temp
   80          continue
   90       continue
  100    continue
c
c        set up to compute b, rsd, or xb.
c
         if (cb) call dcopy(k,qty,1,b,1)
         kp1 = k + 1
         if (cxb) call dcopy(k,qty,1,xb,1)
         if (cr .and. k .lt. n) call dcopy(n-k,qty(kp1),1,rsd(kp1),1)
         if (.not.cxb .or. kp1 .gt. n) go to 120
            do 110 i = kp1, n
               xb(i) = 0.0d0
  110       continue
  120    continue
         if (.not.cr) go to 140
            do 130 i = 1, k
               rsd(i) = 0.0d0
  130       continue
  140    continue
         if (.not.cb) go to 190
c
c           compute b.
c
            do 170 jj = 1, k
               j = k - jj + 1
               if (x(j,j) .ne. 0.0d0) go to 150
                  info = j
c           ......exit
                  go to 180
  150          continue
               b(j) = b(j)/x(j,j)
               if (j .eq. 1) go to 160
                  t = -b(j)
                  call daxpy(j-1,t,x(1,j),1,b,1)
  160          continue
  170       continue
  180       continue
  190    continue
         if (.not.cr .and. .not.cxb) go to 240
c
c           compute rsd or xb as required.
c
            do 230 jj = 1, ju
               j = ju - jj + 1
               if (qraux(j) .eq. 0.0d0) go to 220
                  temp = x(j,j)
                  x(j,j) = qraux(j)
                  if (.not.cr) go to 200
                     t = -ddot(n-j+1,x(j,j),1,rsd(j),1)/x(j,j)
                     call daxpy(n-j+1,t,x(j,j),1,rsd(j),1)
  200             continue
                  if (.not.cxb) go to 210
                     t = -ddot(n-j+1,x(j,j),1,xb(j),1)/x(j,j)
                     call daxpy(n-j+1,t,x(j,j),1,xb(j),1)
  210             continue
                  x(j,j) = temp
  220          continue
  230       continue
  240    continue
  250 continue
      return
      end