1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
/* linpack/sqrsl.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__1 = 1;
/*< subroutine sqrsl(x,ldx,n,k,qraux,y,qy,qty,b,rsd,xb,job,info) >*/
/* Subroutine */ int sqrsl_(real *x, integer *ldx, integer *n, integer *k,
real *qraux, real *y, real *qy, real *qty, real *b, real *rsd, real *
xb, integer *job, integer *info)
{
/* System generated locals */
integer x_dim1, x_offset, i__1, i__2;
/* Local variables */
integer i__, j;
real t;
logical cb;
integer jj;
logical cr;
integer ju, kp1;
logical cxb, cqy;
real temp;
extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
logical cqty;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *), saxpy_(integer *, real *, real *, integer *, real *,
integer *);
/*< integer ldx,n,k,job,info >*/
/*< real x(ldx,1),qraux(1),y(1),qy(1),qty(1),b(1),rsd(1),xb(1) >*/
/* sqrsl applies the output of sqrdc to compute coordinate */
/* transformations, projections, and least squares solutions. */
/* for k .le. min(n,p), let xk be the matrix */
/* xk = (x(jpvt(1)),x(jpvt(2)), ... ,x(jpvt(k))) */
/* formed from columns jpvt(1), ... ,jpvt(k) of the original */
/* n x p matrix x that was input to sqrdc (if no pivoting was */
/* done, xk consists of the first k columns of x in their */
/* original order). sqrdc produces a factored orthogonal matrix q */
/* and an upper triangular matrix r such that */
/* xk = q * (r) */
/* (0) */
/* this information is contained in coded form in the arrays */
/* x and qraux. */
/* on entry */
/* x real(ldx,p). */
/* x contains the output of sqrdc. */
/* ldx integer. */
/* ldx is the leading dimension of the array x. */
/* n integer. */
/* n is the number of rows of the matrix xk. it must */
/* have the same value as n in sqrdc. */
/* k integer. */
/* k is the number of columns of the matrix xk. k */
/* must nnot be greater than min(n,p), where p is the */
/* same as in the calling sequence to sqrdc. */
/* qraux real(p). */
/* qraux contains the auxiliary output from sqrdc. */
/* y real(n) */
/* y contains an n-vector that is to be manipulated */
/* by sqrsl. */
/* job integer. */
/* job specifies what is to be computed. job has */
/* the decimal expansion abcde, with the following */
/* meaning. */
/* if a.ne.0, compute qy. */
/* if b,c,d, or e .ne. 0, compute qty. */
/* if c.ne.0, compute b. */
/* if d.ne.0, compute rsd. */
/* if e.ne.0, compute xb. */
/* note that a request to compute b, rsd, or xb */
/* automatically triggers the computation of qty, for */
/* which an array must be provided in the calling */
/* sequence. */
/* on return */
/* qy real(n). */
/* qy conntains q*y, if its computation has been */
/* requested. */
/* qty real(n). */
/* qty contains trans(q)*y, if its computation has */
/* been requested. here trans(q) is the */
/* transpose of the matrix q. */
/* b real(k) */
/* b contains the solution of the least squares problem */
/* minimize norm2(y - xk*b), */
/* if its computation has been requested. (note that */
/* if pivoting was requested in sqrdc, the j-th */
/* component of b will be associated with column jpvt(j) */
/* of the original matrix x that was input into sqrdc.) */
/* rsd real(n). */
/* rsd contains the least squares residual y - xk*b, */
/* if its computation has been requested. rsd is */
/* also the orthogonal projection of y onto the */
/* orthogonal complement of the column space of xk. */
/* xb real(n). */
/* xb contains the least squares approximation xk*b, */
/* if its computation has been requested. xb is also */
/* the orthogonal projection of y onto the column space */
/* of x. */
/* info integer. */
/* info is zero unless the computation of b has */
/* been requested and r is exactly singular. in */
/* this case, info is the index of the first zero */
/* diagonal element of r and b is left unaltered. */
/* the parameters qy, qty, b, rsd, and xb are not referenced */
/* if their computation is not requested and in this case */
/* can be replaced by dummy variables in the calling program. */
/* to save storage, the user may in some cases use the same */
/* array for different parameters in the calling sequence. a */
/* frequently occurring example is when one wishes to compute */
/* any of b, rsd, or xb and does not need y or qty. in this */
/* case one may identify y, qty, and one of b, rsd, or xb, while */
/* providing separate arrays for anything else that is to be */
/* computed. thus the calling sequence */
/* call sqrsl(x,ldx,n,k,qraux,y,dum,y,b,y,dum,110,info) */
/* will result in the computation of b and rsd, with rsd */
/* overwriting y. more generally, each item in the following */
/* list contains groups of permissible identifications for */
/* a single callinng sequence. */
/* 1. (y,qty,b) (rsd) (xb) (qy) */
/* 2. (y,qty,rsd) (b) (xb) (qy) */
/* 3. (y,qty,xb) (b) (rsd) (qy) */
/* 4. (y,qy) (qty,b) (rsd) (xb) */
/* 5. (y,qy) (qty,rsd) (b) (xb) */
/* 6. (y,qy) (qty,xb) (b) (rsd) */
/* in any group the value returned in the array allocated to */
/* the group corresponds to the last member of the group. */
/* linpack. this version dated 08/14/78 . */
/* g.w. stewart, university of maryland, argonne national lab. */
/* sqrsl uses the following functions and subprograms. */
/* blas saxpy,scopy,sdot */
/* fortran abs,min0,mod */
/* internal variables */
/*< integer i,j,jj,ju,kp1 >*/
/*< real sdot,t,temp >*/
/*< logical cb,cqy,cqty,cr,cxb >*/
/* set info flag. */
/*< info = 0 >*/
/* Parameter adjustments */
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
--qraux;
--y;
--qy;
--qty;
--b;
--rsd;
--xb;
/* Function Body */
*info = 0;
/* determine what is to be computed. */
/*< cqy = job/10000 .ne. 0 >*/
cqy = *job / 10000 != 0;
/*< cqty = mod(job,10000) .ne. 0 >*/
cqty = *job % 10000 != 0;
/*< cb = mod(job,1000)/100 .ne. 0 >*/
cb = *job % 1000 / 100 != 0;
/*< cr = mod(job,100)/10 .ne. 0 >*/
cr = *job % 100 / 10 != 0;
/*< cxb = mod(job,10) .ne. 0 >*/
cxb = *job % 10 != 0;
/*< ju = min0(k,n-1) >*/
/* Computing MIN */
i__1 = *k, i__2 = *n - 1;
ju = min(i__1,i__2);
/* special action when n=1. */
/*< if (ju .ne. 0) go to 40 >*/
if (ju != 0) {
goto L40;
}
/*< if (cqy) qy(1) = y(1) >*/
if (cqy) {
qy[1] = y[1];
}
/*< if (cqty) qty(1) = y(1) >*/
if (cqty) {
qty[1] = y[1];
}
/*< if (cxb) xb(1) = y(1) >*/
if (cxb) {
xb[1] = y[1];
}
/*< if (.not.cb) go to 30 >*/
if (! cb) {
goto L30;
}
/*< if (x(1,1) .ne. 0.0e0) go to 10 >*/
if (x[x_dim1 + 1] != (float)0.) {
goto L10;
}
/*< info = 1 >*/
*info = 1;
/*< go to 20 >*/
goto L20;
/*< 10 continue >*/
L10:
/*< b(1) = y(1)/x(1,1) >*/
b[1] = y[1] / x[x_dim1 + 1];
/*< 20 continue >*/
L20:
/*< 30 continue >*/
L30:
/*< if (cr) rsd(1) = 0.0e0 >*/
if (cr) {
rsd[1] = (float)0.;
}
/*< go to 250 >*/
goto L250;
/*< 40 continue >*/
L40:
/* set up to compute qy or qty. */
/*< if (cqy) call scopy(n,y,1,qy,1) >*/
if (cqy) {
scopy_(n, &y[1], &c__1, &qy[1], &c__1);
}
/*< if (cqty) call scopy(n,y,1,qty,1) >*/
if (cqty) {
scopy_(n, &y[1], &c__1, &qty[1], &c__1);
}
/*< if (.not.cqy) go to 70 >*/
if (! cqy) {
goto L70;
}
/* compute qy. */
/*< do 60 jj = 1, ju >*/
i__1 = ju;
for (jj = 1; jj <= i__1; ++jj) {
/*< j = ju - jj + 1 >*/
j = ju - jj + 1;
/*< if (qraux(j) .eq. 0.0e0) go to 50 >*/
if (qraux[j] == (float)0.) {
goto L50;
}
/*< temp = x(j,j) >*/
temp = x[j + j * x_dim1];
/*< x(j,j) = qraux(j) >*/
x[j + j * x_dim1] = qraux[j];
/*< t = -sdot(n-j+1,x(j,j),1,qy(j),1)/x(j,j) >*/
i__2 = *n - j + 1;
t = -sdot_(&i__2, &x[j + j * x_dim1], &c__1, &qy[j], &c__1) / x[j + j
* x_dim1];
/*< call saxpy(n-j+1,t,x(j,j),1,qy(j),1) >*/
i__2 = *n - j + 1;
saxpy_(&i__2, &t, &x[j + j * x_dim1], &c__1, &qy[j], &c__1);
/*< x(j,j) = temp >*/
x[j + j * x_dim1] = temp;
/*< 50 continue >*/
L50:
/*< 60 continue >*/
/* L60: */
;
}
/*< 70 continue >*/
L70:
/*< if (.not.cqty) go to 100 >*/
if (! cqty) {
goto L100;
}
/* compute trans(q)*y. */
/*< do 90 j = 1, ju >*/
i__1 = ju;
for (j = 1; j <= i__1; ++j) {
/*< if (qraux(j) .eq. 0.0e0) go to 80 >*/
if (qraux[j] == (float)0.) {
goto L80;
}
/*< temp = x(j,j) >*/
temp = x[j + j * x_dim1];
/*< x(j,j) = qraux(j) >*/
x[j + j * x_dim1] = qraux[j];
/*< t = -sdot(n-j+1,x(j,j),1,qty(j),1)/x(j,j) >*/
i__2 = *n - j + 1;
t = -sdot_(&i__2, &x[j + j * x_dim1], &c__1, &qty[j], &c__1) / x[j +
j * x_dim1];
/*< call saxpy(n-j+1,t,x(j,j),1,qty(j),1) >*/
i__2 = *n - j + 1;
saxpy_(&i__2, &t, &x[j + j * x_dim1], &c__1, &qty[j], &c__1);
/*< x(j,j) = temp >*/
x[j + j * x_dim1] = temp;
/*< 80 continue >*/
L80:
/*< 90 continue >*/
/* L90: */
;
}
/*< 100 continue >*/
L100:
/* set up to compute b, rsd, or xb. */
/*< if (cb) call scopy(k,qty,1,b,1) >*/
if (cb) {
scopy_(k, &qty[1], &c__1, &b[1], &c__1);
}
/*< kp1 = k + 1 >*/
kp1 = *k + 1;
/*< if (cxb) call scopy(k,qty,1,xb,1) >*/
if (cxb) {
scopy_(k, &qty[1], &c__1, &xb[1], &c__1);
}
/*< if (cr .and. k .lt. n) call scopy(n-k,qty(kp1),1,rsd(kp1),1) >*/
if (cr && *k < *n) {
i__1 = *n - *k;
scopy_(&i__1, &qty[kp1], &c__1, &rsd[kp1], &c__1);
}
/*< if (.not.cxb .or. kp1 .gt. n) go to 120 >*/
if (! cxb || kp1 > *n) {
goto L120;
}
/*< do 110 i = kp1, n >*/
i__1 = *n;
for (i__ = kp1; i__ <= i__1; ++i__) {
/*< xb(i) = 0.0e0 >*/
xb[i__] = (float)0.;
/*< 110 continue >*/
/* L110: */
}
/*< 120 continue >*/
L120:
/*< if (.not.cr) go to 140 >*/
if (! cr) {
goto L140;
}
/*< do 130 i = 1, k >*/
i__1 = *k;
for (i__ = 1; i__ <= i__1; ++i__) {
/*< rsd(i) = 0.0e0 >*/
rsd[i__] = (float)0.;
/*< 130 continue >*/
/* L130: */
}
/*< 140 continue >*/
L140:
/*< if (.not.cb) go to 190 >*/
if (! cb) {
goto L190;
}
/* compute b. */
/*< do 170 jj = 1, k >*/
i__1 = *k;
for (jj = 1; jj <= i__1; ++jj) {
/*< j = k - jj + 1 >*/
j = *k - jj + 1;
/*< if (x(j,j) .ne. 0.0e0) go to 150 >*/
if (x[j + j * x_dim1] != (float)0.) {
goto L150;
}
/*< info = j >*/
*info = j;
/* ......exit */
/*< go to 180 >*/
goto L180;
/*< 150 continue >*/
L150:
/*< b(j) = b(j)/x(j,j) >*/
b[j] /= x[j + j * x_dim1];
/*< if (j .eq. 1) go to 160 >*/
if (j == 1) {
goto L160;
}
/*< t = -b(j) >*/
t = -b[j];
/*< call saxpy(j-1,t,x(1,j),1,b,1) >*/
i__2 = j - 1;
saxpy_(&i__2, &t, &x[j * x_dim1 + 1], &c__1, &b[1], &c__1);
/*< 160 continue >*/
L160:
/*< 170 continue >*/
/* L170: */
;
}
/*< 180 continue >*/
L180:
/*< 190 continue >*/
L190:
/*< if (.not.cr .and. .not.cxb) go to 240 >*/
if (! cr && ! cxb) {
goto L240;
}
/* compute rsd or xb as required. */
/*< do 230 jj = 1, ju >*/
i__1 = ju;
for (jj = 1; jj <= i__1; ++jj) {
/*< j = ju - jj + 1 >*/
j = ju - jj + 1;
/*< if (qraux(j) .eq. 0.0e0) go to 220 >*/
if (qraux[j] == (float)0.) {
goto L220;
}
/*< temp = x(j,j) >*/
temp = x[j + j * x_dim1];
/*< x(j,j) = qraux(j) >*/
x[j + j * x_dim1] = qraux[j];
/*< if (.not.cr) go to 200 >*/
if (! cr) {
goto L200;
}
/*< t = -sdot(n-j+1,x(j,j),1,rsd(j),1)/x(j,j) >*/
i__2 = *n - j + 1;
t = -sdot_(&i__2, &x[j + j * x_dim1], &c__1, &rsd[j], &c__1) / x[j +
j * x_dim1];
/*< call saxpy(n-j+1,t,x(j,j),1,rsd(j),1) >*/
i__2 = *n - j + 1;
saxpy_(&i__2, &t, &x[j + j * x_dim1], &c__1, &rsd[j], &c__1);
/*< 200 continue >*/
L200:
/*< if (.not.cxb) go to 210 >*/
if (! cxb) {
goto L210;
}
/*< t = -sdot(n-j+1,x(j,j),1,xb(j),1)/x(j,j) >*/
i__2 = *n - j + 1;
t = -sdot_(&i__2, &x[j + j * x_dim1], &c__1, &xb[j], &c__1) / x[j + j
* x_dim1];
/*< call saxpy(n-j+1,t,x(j,j),1,xb(j),1) >*/
i__2 = *n - j + 1;
saxpy_(&i__2, &t, &x[j + j * x_dim1], &c__1, &xb[j], &c__1);
/*< 210 continue >*/
L210:
/*< x(j,j) = temp >*/
x[j + j * x_dim1] = temp;
/*< 220 continue >*/
L220:
/*< 230 continue >*/
/* L230: */
;
}
/*< 240 continue >*/
L240:
/*< 250 continue >*/
L250:
/*< return >*/
return 0;
/*< end >*/
} /* sqrsl_ */
#ifdef __cplusplus
}
#endif
|