File: rpoly.c

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (913 lines) | stat: -rw-r--r-- 28,561 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
#include "v3p_netlib.h"

#undef abs
#undef min
#undef max
#include <math.h>
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define min(a,b) ((a) <= (b) ? (a) : (b))
#define max(a,b) ((a) >= (b) ? (a) : (b))

static void calcsc_(integer *type,
                    v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg);
static void fxshfr_(integer *l2, integer *nz,
                    v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg);
static void newest_(integer *type, doublereal *uu, doublereal *vv,
                    v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg);
static void nextk_(integer *type,
                   v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg);
static void quadit_(doublereal *uu, doublereal *vv, integer *nz,
                    v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg);
static void realit_(doublereal *sss, integer *nz, integer *iflag,
                    v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg);
static void quadsd_(integer *nn, doublereal *u, doublereal *v,
                    doublereal *p, doublereal *q, doublereal *a,
                    doublereal *b);
static void quad_(doublereal *a, doublereal *b1, doublereal *c,
                  doublereal *sr, doublereal *si, doublereal *lr,
                  doublereal *li);

#define global_1 (*v3p_netlib_rpoly_global_arg)

/* Table of constant values */
static doublereal c_b41 = 1.;

#ifdef _MSC_VER
// This needs to be before the start of the function that contains the offending code
# pragma warning ( disable : 4756)
#endif

/* ====================================================================== */
/* NIST Guide to Available Math Software.                                 */
/* Fullsource for module 493 from package TOMS.                           */
/* Retrieved from NETLIB on Wed Jul  3 11:47:53 1996.                     */
/* ====================================================================== */

/* Subroutine */ void rpoly_(
  doublereal* op, integer* degree,
  doublereal* zeror, doublereal* zeroi,
  logical* fail,
  v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg
  )
{
    /* Builtin functions */
    double log(doublereal), pow_di(doublereal *, integer *), exp(doublereal);

    /* System generated locals */
    integer i__1;

    /* Local variables */
    doublereal base;
    doublereal temp[101];
    real cosr, sinr;
    integer i, j, l;
    doublereal t;
    real x, infin;
    logical zerok;
    doublereal aa, bb, cc;
    real df, ff;
    integer jj;
    real sc, lo, dx, pt[101], xm;
    integer nz;
    doublereal factor;
    real xx, yy, smalno;
    integer nm1;
    real bnd, min_, max_;
    integer cnt;
    real xxx;

/* FINDS THE ZEROS OF A REAL POLYNOMIAL                 */
/* OP  - DOUBLE PRECISION VECTOR OF COEFFICIENTS IN     */
/*       ORDER OF DECREASING POWERS.                    */
/* DEGREE   - INTEGER DEGREE OF POLYNOMIAL.             */
/* ZEROR, ZEROI - OUTPUT DOUBLE PRECISION VECTORS OF    */
/*                REAL AND IMAGINARY PARTS OF THE       */
/*                ZEROS.                                */
/* FAIL  - OUTPUT LOGICAL PARAMETER, TRUE ONLY IF       */
/*         LEADING COEFFICIENT IS ZERO OR IF RPOLY      */
/*         HAS FOUND FEWER THAN DEGREE ZEROS.           */
/*         IN THE LATTER CASE DEGREE IS RESET TO        */
/*         THE NUMBER OF ZEROS FOUND.                   */
/* TO CHANGE THE SIZE OF POLYNOMIALS WHICH CAN BE       */
/* SOLVED, RESET THE DIMENSIONS OF THE ARRAYS IN THE    */
/* COMMON AREA AND IN THE FOLLOWING DECLARATIONS.       */
/* THE SUBROUTINE USES SINGLE PRECISION CALCULATIONS    */
/* FOR SCALING, BOUNDS AND ERROR CALCULATIONS. ALL      */
/* CALCULATIONS FOR THE ITERATIONS ARE DONE IN DOUBLE   */
/* PRECISION.                                           */
/* THE FOLLOWING STATEMENTS SET MACHINE CONSTANTS USED  */
/* IN VARIOUS PARTS OF THE PROGRAM. THE MEANING OF THE  */
/* FOUR CONSTANTS ARE...                                */
/* ETA     THE MAXIMUM RELATIVE REPRESENTATION ERROR    */
/*         WHICH CAN BE DESCRIBED AS THE SMALLEST       */
/*         POSITIVE FLOATING POINT NUMBER SUCH THAT     */
/*         1.D0+ETA IS GREATER THAN 1.                  */
/* INFIN   THE LARGEST FLOATING-POINT NUMBER.           */
/* SMALNO  THE SMALLEST POSITIVE FLOATING-POINT NUMBER  */
/*         IF THE EXPONENT RANGE DIFFERS IN SINGLE AND  */
/*         DOUBLE PRECISION THEN SMALNO AND INFIN       */
/*         SHOULD INDICATE THE SMALLER RANGE.           */
/* BASE    THE BASE OF THE FLOATING-POINT NUMBER        */
/*         SYSTEM USED.                                 */
/* THE VALUES BELOW CORRESPOND TO THE BURROUGHS B6700   */
/* changed for sparc, but these seem better -- awf */

    base = 2.0;
    global_1.eta = 2.23e-16f;
    infin = 3.40282346638528860e+38f;
    smalno = 1e-33f;
/* ARE AND MRE REFER TO THE UNIT ERROR IN + AND * */
/* RESPECTIVELY. THEY ARE ASSUMED TO BE THE SAME AS */
/* ETA. */
    global_1.are = global_1.eta;
    global_1.mre = global_1.eta;
    lo = smalno / global_1.eta;
/* INITIALIZATION OF CONSTANTS FOR SHIFT ROTATION */
    xx = 0.70710678f;
    yy = -xx;
    cosr = -0.069756474f;
    sinr = 0.99756405f;
    *fail = FALSE_;
    global_1.n = *degree;
    global_1.nn = global_1.n + 1;
/* ALGORITHM FAILS IF THE LEADING COEFFICIENT IS ZERO. */
    if (op[0] == 0.) {
        *fail = TRUE_;
        *degree = 0;
        return;
    }
/* REMOVE THE ZEROS AT THE ORIGIN IF ANY */
    while (op[global_1.nn - 1] == 0.) {
        j = *degree - global_1.n;
        zeror[j] = 0.;
        zeroi[j] = 0.;
        --global_1.nn;
        --global_1.n;
    }
/* MAKE A COPY OF THE COEFFICIENTS */
    for (i = 0; i < global_1.nn; ++i) {
        global_1.p[i] = op[i];
    }
/* START THE ALGORITHM FOR ONE ZERO */
L40:
    if (global_1.n > 2) {
        goto L60;
    }
    if (global_1.n < 1) {
        return;
    }
/* CALCULATE THE FINAL ZERO OR PAIR OF ZEROS */
    if (global_1.n != 2) {
        zeror[*degree-1] = -global_1.p[1] / global_1.p[0];
        zeroi[*degree-1] = 0.;
        return;
    }
    quad_(global_1.p, &global_1.p[1], &global_1.p[2],
          &zeror[*degree-2], &zeroi[*degree-2], &zeror[*degree-1], &zeroi[*degree-1]);
    return;
/* FIND LARGEST AND SMALLEST MODULI OF COEFFICIENTS. */
L60:
    max_ = 0.0f;
    min_ = infin;
    for (i = 0; i < global_1.nn; ++i) {
        x = (real)abs(global_1.p[i]);
        if (x > max_) {
            max_ = x;
        }
        if (x != 0.0f && x < min_) {
            min_ = x;
        }
    }
/* SCALE IF THERE ARE LARGE OR VERY SMALL COEFFICIENTS */
/* COMPUTES A SCALE FACTOR TO MULTIPLY THE */
/* COEFFICIENTS OF THE POLYNOMIAL. THE SCALING IS DONE */
/* TO AVOID OVERFLOW AND TO AVOID UNDETECTED UNDERFLOW */
/* INTERFERING WITH THE CONVERGENCE CRITERION. */
/* THE FACTOR IS A POWER OF THE BASE */
    sc = lo / min_;
    if (sc > 1.0f) {
        goto L80;
    }
    if (max_ < 10.0f) {
        goto L110;
    }
    if (sc == 0.0f) {
        sc = smalno;
    }
    goto L90;
L80:
    if (infin / sc < max_) {
        goto L110;
    }
L90:
    l = (int)(log((doublereal)sc) / log(base) + 0.5);
    factor = base;
    factor = pow_di(&factor, &l);
    if (factor == 1.) {
        goto L110;
    }
    for (i = 0; i < global_1.nn; ++i) {
        global_1.p[i] *= factor;
    }
/* COMPUTE LOWER BOUND ON MODULI OF ZEROS. */
L110:
    for (i = 0; i < global_1.nn; ++i) {
        pt[i] = (real)abs(global_1.p[i]);
    }
    pt[global_1.nn - 1] = -pt[global_1.nn - 1];
/* COMPUTE UPPER ESTIMATE OF BOUND */
    x = (real)exp((log(-pt[global_1.nn - 1]) - log(pt[0])) / global_1.n);
    if (pt[global_1.n - 1] == 0.0f) {
        goto L130;
    }
/* IF NEWTON STEP AT THE ORIGIN IS BETTER, USE IT. */
    xm = -pt[global_1.nn - 1] / pt[global_1.n - 1];
    if (xm < x) {
        x = xm;
    }
/* CHOP THE INTERVAL (0,X) UNTIL FF .LE. 0 */
L130:
    xm = x * 0.1f;
    ff = pt[0];
    for (i = 1; i < global_1.nn; ++i) {
        ff = ff * xm + pt[i];
    }
    if (ff > 0.0f) {
        x = xm;
        goto L130;
    }
    dx = x;
/* DO NEWTON ITERATION UNTIL X CONVERGES TO TWO */
/* DECIMAL PLACES */
    while (abs(dx/x) > 0.005f) {
        ff = pt[0];
        df = ff;
        for (i = 1; i < global_1.n; ++i) {
            ff = ff * x + pt[i];
            df = df * x + ff;
        }
        ff = ff * x + pt[global_1.nn - 1];
        dx = ff / df;
        x -= dx;
    }
    bnd = x;
/* COMPUTE THE DERIVATIVE AS THE INITIAL K POLYNOMIAL */
/* AND DO 5 STEPS WITH NO SHIFT */
    nm1 = global_1.n - 1;
    for (i = 1; i < global_1.n; ++i) {
        global_1.k[i] = (global_1.nn - i - 1) * global_1.p[i] / global_1.n;
    }
    global_1.k[0] = global_1.p[0];
    aa = global_1.p[global_1.nn - 1];
    bb = global_1.p[global_1.n - 1];
    zerok = global_1.k[global_1.n - 1] == 0.;
    for (jj = 1; jj <= 5; ++jj) {
        cc = global_1.k[global_1.n - 1];
        if (zerok) { /* USE UNSCALED FORM OF RECURRENCE */
            for (i = 0; i < nm1; ++i) {
                j = global_1.nn - i - 2;
                global_1.k[j] = global_1.k[j - 1];
            }
            global_1.k[0] = 0.;
            zerok = global_1.k[global_1.n - 1] == 0.;
        }
        else { /* USE SCALED FORM OF RECURRENCE */
            t = -aa / cc;
            for (i = 0; i < nm1; ++i) {
                j = global_1.nn - i - 2;
                global_1.k[j] = t * global_1.k[j - 1] + global_1.p[j];
            }
            global_1.k[0] = global_1.p[0];
            zerok = abs(global_1.k[global_1.n - 1]) <= abs(bb) * global_1.eta * 10.0;
        }
    }
/* SAVE K FOR RESTARTS WITH NEW SHIFTS */
    for (i = 0; i < global_1.n; ++i) {
        temp[i] = global_1.k[i];
    }
/* LOOP TO SELECT THE QUADRATIC  CORRESPONDING TO EACH */
/* NEW SHIFT */
    for (cnt = 1; cnt <= 20; ++cnt) {
/* QUADRATIC CORRESPONDS TO A DOUBLE SHIFT TO A */
/* NON-REAL POINT AND ITS COMPLEX CONJUGATE. THE POINT */
/* HAS MODULUS BND AND AMPLITUDE ROTATED BY 94 DEGREES */
/* FROM THE PREVIOUS SHIFT */
        xxx = cosr * xx - sinr * yy;
        yy = sinr * xx + cosr * yy;
        xx = xxx;
        global_1.sr = bnd * xx;
        global_1.si = bnd * yy;
        global_1.u = global_1.sr * -2.;
        global_1.v = bnd;
/* SECOND STAGE CALCULATION, FIXED QUADRATIC */
        i__1 = cnt * 20;
        fxshfr_(&i__1, &nz, v3p_netlib_rpoly_global_arg);
        if (nz == 0) {
            goto L260;
        }
/* THE SECOND STAGE JUMPS DIRECTLY TO ONE OF THE THIRD */
/* STAGE ITERATIONS AND RETURNS HERE IF SUCCESSFUL. */
/* DEFLATE THE POLYNOMIAL, STORE THE ZERO OR ZEROS AND */
/* RETURN TO THE MAIN ALGORITHM. */
        j = *degree - global_1.n;
        zeror[j] = global_1.szr;
        zeroi[j] = global_1.szi;
        global_1.nn -= nz;
        global_1.n = global_1.nn - 1;
        for (i = 0; i < global_1.nn; ++i) {
            global_1.p[i] = global_1.qp[i];
        }
        if (nz == 1) {
            goto L40;
        }
        zeror[j + 1] = global_1.lzr;
        zeroi[j + 1] = global_1.lzi;
        goto L40;
/* IF THE ITERATION IS UNSUCCESSFUL ANOTHER QUADRATIC */
/* IS CHOSEN AFTER RESTORING K */
L260:
        for (i = 0; i < global_1.n; ++i) {
            global_1.k[i] = temp[i];
        }
    }
/* RETURN WITH FAILURE IF NO CONVERGENCE WITH 20 */
/* SHIFTS */
    *fail = TRUE_;
    *degree -= global_1.n;
} /* rpoly_ */

/* Subroutine */
static void fxshfr_(integer *l2, integer *nz,
                    v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg)
{
    /* Local variables */
    integer type;
    logical stry, vtry;
    integer i, j, iflag;
    doublereal s;
    real betas, betav;
    logical spass;
    logical vpass;
    doublereal ui, vi;
    real ts, tv, vv;
    real ots=0, otv=0, tss;
    doublereal ss, oss, ovv, svu, svv;
    real tvv;

/* COMPUTES UP TO  L2  FIXED SHIFT K-POLYNOMIALS, */
/* TESTING FOR CONVERGENCE IN THE LINEAR OR QUADRATIC */
/* CASE. INITIATES ONE OF THE VARIABLE SHIFT */
/* ITERATIONS AND RETURNS WITH THE NUMBER OF ZEROS */
/* FOUND. */
/* L2 - LIMIT OF FIXED SHIFT STEPS */
/* NZ - NUMBER OF ZEROS FOUND */
    *nz = 0;
    betav = .25f;
    betas = .25f;
    oss = global_1.sr;
    ovv = global_1.v;
/* EVALUATE POLYNOMIAL BY SYNTHETIC DIVISION */
    quadsd_(&global_1.nn, &global_1.u, &global_1.v, global_1.p, global_1.qp, &global_1.a, &global_1.b);
    calcsc_(&type, v3p_netlib_rpoly_global_arg);
    for (j = 1; j <= *l2; ++j) {
/* CALCULATE NEXT K POLYNOMIAL AND ESTIMATE V */
        nextk_(&type, v3p_netlib_rpoly_global_arg);
        calcsc_(&type, v3p_netlib_rpoly_global_arg);
        newest_(&type, &ui, &vi, v3p_netlib_rpoly_global_arg);
        vv = (real)vi;
/* ESTIMATE S */
        ss = 0.0;
        if (global_1.k[global_1.n - 1] != 0.) {
            ss = -global_1.p[global_1.nn - 1] / global_1.k[global_1.n - 1];
        }
        tv = 1.0f;
        ts = 1.0f;
        if (j == 1 || type == 3) {
            goto L70;
        }
/* COMPUTE RELATIVE MEASURES OF CONVERGENCE OF S AND V */
/* SEQUENCES */
        if (vv != 0.0f) {
            tv = (real)abs((vv - ovv) / vv);
        }
        if (ss != 0.0) {
            ts = (real)abs((ss - oss) / ss);
        }
/* IF DECREASING, MULTIPLY TWO MOST RECENT */
/* CONVERGENCE MEASURES */
        tvv = 1.0f;
        if (tv < otv) {
            tvv = tv * otv;
        }
        tss = 1.0f;
        if (ts < ots) {
            tss = ts * ots;
        }
/* COMPARE WITH CONVERGENCE CRITERIA */
        vpass = tvv < betav;
        spass = tss < betas;
        if (! (spass || vpass)) {
            goto L70;
        }
/* AT LEAST ONE SEQUENCE HAS PASSED THE CONVERGENCE */
/* TEST. STORE VARIABLES BEFORE ITERATING */
        svu = global_1.u;
        svv = global_1.v;
        for (i = 1; i <= global_1.n; ++i) {
            global_1.svk[i - 1] = global_1.k[i - 1];
        }
        s = ss;
/* CHOOSE ITERATION ACCORDING TO THE FASTEST */
/* CONVERGING SEQUENCE */
        vtry = FALSE_;
        stry = FALSE_;
        if (spass && (! vpass || tss < tvv)) {
            goto L40;
        }
L20:
        quadit_(&ui, &vi, nz, v3p_netlib_rpoly_global_arg);
        if (*nz > 0) {
            return;
        }
/* QUADRATIC ITERATION HAS FAILED. FLAG THAT IT HAS */
/* BEEN TRIED AND DECREASE THE CONVERGENCE CRITERION. */
        vtry = TRUE_;
        betav *= 0.25f;
/* TRY LINEAR ITERATION IF IT HAS NOT BEEN TRIED AND */
/* THE S SEQUENCE IS CONVERGING */
        if (stry || ! spass) {
            goto L50;
        }
        for (i = 1; i <= global_1.n; ++i) {
            global_1.k[i - 1] = global_1.svk[i - 1];
        }
L40:
        realit_(&s, nz, &iflag, v3p_netlib_rpoly_global_arg);
        if (*nz > 0) {
            return;
        }
/* LINEAR ITERATION HAS FAILED. FLAG THAT IT HAS BEEN */
/* TRIED AND DECREASE THE CONVERGENCE CRITERION */
        stry = TRUE_;
        betas *= 0.25f;
/* IF LINEAR ITERATION SIGNALS AN ALMOST DOUBLE REAL */
/* ZERO ATTEMPT QUADRATIC ITERATION */
        if (iflag != 0) {
            ui = -(s + s);
            vi = s * s;
            goto L20;
        }
/* RESTORE VARIABLES */
L50:
        global_1.u = svu;
        global_1.v = svv;
        for (i = 1; i <= global_1.n; ++i) {
            global_1.k[i - 1] = global_1.svk[i - 1];
        }
/* TRY QUADRATIC ITERATION IF IT HAS NOT BEEN TRIED */
/* AND THE V SEQUENCE IS CONVERGING */
        if (vpass && ! vtry) {
            goto L20;
        }
/* RECOMPUTE QP AND SCALAR VALUES TO CONTINUE THE */
/* SECOND STAGE */
        quadsd_(&global_1.nn, &global_1.u, &global_1.v, global_1.p, global_1.qp, &global_1.a, &global_1.b);
        calcsc_(&type, v3p_netlib_rpoly_global_arg);
L70:
        ovv = vv;
        oss = ss;
        otv = tv;
        ots = ts;
    }
} /* fxshfr_ */

/* Subroutine */
static void quadit_(doublereal *uu, doublereal *vv, integer *nz,
                    v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg)
{
    /* Local variables */
    integer type, i, j;
    doublereal t;
    logical tried;
    real ee;
    doublereal ui, vi;
    real mp, zm;
    real relstp=0, omp=0;

/* VARIABLE-SHIFT K-POLYNOMIAL ITERATION FOR A */
/* QUADRATIC FACTOR CONVERGES ONLY IF THE ZEROS ARE */
/* EQUIMODULAR OR NEARLY SO. */
/* UU,VV - COEFFICIENTS OF STARTING QUADRATIC */
/* NZ - NUMBER OF ZERO FOUND */
    *nz = 0;
    tried = FALSE_;
    global_1.u = *uu;
    global_1.v = *vv;
    j = 0;
/* MAIN LOOP */
L10:
    quad_(&c_b41, &global_1.u, &global_1.v, &global_1.szr, &global_1.szi, &global_1.lzr, &global_1.lzi);
/* RETURN IF ROOTS OF THE QUADRATIC ARE REAL AND NOT */
/* CLOSE TO MULTIPLE OR NEARLY EQUAL AND  OF OPPOSITE */
/* SIGN */
    if (abs(abs(global_1.szr) - abs(global_1.lzr)) > abs(global_1.lzr) * .01) {
        return;
    }
/* EVALUATE POLYNOMIAL BY QUADRATIC SYNTHETIC DIVISION */
    quadsd_(&global_1.nn, &global_1.u, &global_1.v, global_1.p, global_1.qp, &global_1.a, &global_1.b);
    mp = (real)abs(global_1.a - global_1.szr * global_1.b)
       + (real)abs(global_1.szi * global_1.b);
/* COMPUTE A RIGOROUS  BOUND ON THE ROUNDING ERROR IN */
/* EVALUTING P */
    zm = (real)sqrt(abs(global_1.v));
    ee = (real)abs(global_1.qp[0]) * 2.0f;
    t = -global_1.szr * global_1.b;
    for (i = 2; i <= global_1.n; ++i) {
        ee = ee * zm + (real)abs(global_1.qp[i - 1]);
    }
    ee = ee * zm + (real)abs(global_1.a + t);
    ee = (real)((global_1.mre * 5.0 + global_1.are * 4.0) * ee
       - (global_1.mre * 5.0 + global_1.are * 2.0) * (abs(global_1.a + t) + abs(global_1.b) * zm)
       + global_1.are * 2.0 * abs(t));
/* ITERATION HAS CONVERGED SUFFICIENTLY IF THE */
/* POLYNOMIAL VALUE IS LESS THAN 20 TIMES THIS BOUND */
    if (mp <= ee * 20.0f) {
        *nz = 2;
        return;
    }
/* STOP ITERATION AFTER 20 STEPS */
    if (++j > 20) {
        return;
    }
    if (j < 2) {
        goto L50;
    }
    if (relstp > 0.01f || mp < omp || tried) {
        goto L50;
    }
/* A CLUSTER APPEARS TO BE STALLING THE CONVERGENCE. */
/* FIVE FIXED SHIFT STEPS ARE TAKEN WITH A U,V CLOSE */
/* TO THE CLUSTER */
    if (relstp < global_1.eta) {
        relstp = global_1.eta;
    }
    relstp = (float)sqrt(relstp);
    global_1.u -= global_1.u * relstp;
    global_1.v += global_1.v * relstp;
    quadsd_(&global_1.nn, &global_1.u, &global_1.v, global_1.p, global_1.qp, &global_1.a, &global_1.b);
    for (i = 1; i <= 5; ++i) {
        calcsc_(&type, v3p_netlib_rpoly_global_arg);
        nextk_(&type, v3p_netlib_rpoly_global_arg);
    }
    tried = TRUE_;
    j = 0;
L50:
    omp = mp;
/* CALCULATE NEXT K POLYNOMIAL AND NEW U AND V */
    calcsc_(&type, v3p_netlib_rpoly_global_arg);
    nextk_(&type, v3p_netlib_rpoly_global_arg);
    calcsc_(&type, v3p_netlib_rpoly_global_arg);
    newest_(&type, &ui, &vi, v3p_netlib_rpoly_global_arg);
/* IF VI IS ZERO THE ITERATION IS NOT CONVERGING */
    if (vi == 0.) {
        return;
    }
    relstp = (real)abs((vi - global_1.v) / vi);
    global_1.u = ui;
    global_1.v = vi;
    goto L10;
} /* quadit_ */

/* Subroutine */
static void realit_(doublereal *sss, integer *nz, integer *iflag,
                    v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg)
{
    /* Local variables */
    integer i, j;
    doublereal s, t=0;
    real ee, mp, ms;
    doublereal kv, pv;
    real omp=0;

/* VARIABLE-SHIFT H POLYNOMIAL ITERATION FOR A REAL */
/* ZERO. */
/* SSS   - STARTING ITERATE */
/* NZ    - NUMBER OF ZERO FOUND */
/* IFLAG - FLAG TO INDICATE A PAIR OF ZEROS NEAR REAL */
/*         AXIS. */
    *nz = 0;
    s = *sss;
    *iflag = 0;
    j = 0;
/* MAIN LOOP */
L10:
    pv = global_1.p[0];
/* EVALUATE P AT S */
    global_1.qp[0] = pv;
    for (i = 2; i <= global_1.nn; ++i) {
        pv = pv * s + global_1.p[i - 1];
        global_1.qp[i - 1] = pv;
    }
    mp = (real)abs(pv);
/* COMPUTE A RIGOROUS BOUND ON THE ERROR IN EVALUATING */
/* P */
    ms = (real)abs(s);
    ee = (real)(global_1.mre / (global_1.are + global_1.mre) * abs(global_1.qp[0]));
    for (i = 2; i <= global_1.nn; ++i) {
        ee = ee * ms + (real)abs(global_1.qp[i - 1]);
    }
/* ITERATION HAS CONVERGED SUFFICIENTLY IF THE */
/* POLYNOMIAL VALUE IS LESS THAN 20 TIMES THIS BOUND */
    if (mp <= ((global_1.are + global_1.mre) * ee - global_1.mre * mp) * 20.0f) {
        *nz = 1;
        global_1.szr = s;
        global_1.szi = 0.;
        return;
    }
/* STOP ITERATION AFTER 10 STEPS */
    if (++j > 10) {
        return;
    }
    if (j < 2) {
        goto L50;
    }
    if (abs(t) > abs(s - t) * 0.001 || mp <= omp) {
        goto L50;
    }
/* A CLUSTER OF ZEROS NEAR THE REAL AXIS HAS BEEN */
/* ENCOUNTERED RETURN WITH IFLAG SET TO INITIATE A */
/* QUADRATIC ITERATION */
    *iflag = 1;
    *sss = s;
    return;
/* RETURN IF THE POLYNOMIAL VALUE HAS INCREASED */
/* SIGNIFICANTLY */
L50:
    omp = mp;
/* COMPUTE T, THE NEXT POLYNOMIAL, AND THE NEW ITERATE */
    kv = global_1.k[0];
    global_1.qk[0] = kv;
    for (i = 2; i <= global_1.n; ++i) {
        kv = kv * s + global_1.k[i - 1];
        global_1.qk[i - 1] = kv;
    }
    if (abs(kv) <= abs(global_1.k[global_1.n - 1]) * 10.0 * global_1.eta) {
        goto L80;
    }
/* USE THE SCALED FORM OF THE RECURRENCE IF THE VALUE */
/* OF K AT S IS NONZERO */
    t = -pv / kv;
    global_1.k[0] = global_1.qp[0];
    for (i = 2; i <= global_1.n; ++i) {
        global_1.k[i - 1] = t * global_1.qk[i - 2] + global_1.qp[i - 1];
    }
    goto L100;
/* USE UNSCALED FORM */
L80:
    global_1.k[0] = 0.;
    for (i = 2; i <= global_1.n; ++i) {
        global_1.k[i - 1] = global_1.qk[i - 2];
    }
L100:
    kv = global_1.k[0];
    for (i = 2; i <= global_1.n; ++i) {
        kv = kv * s + global_1.k[i - 1];
    }
    t = 0.;
    if (abs(kv) > abs(global_1.k[global_1.n - 1]) * 10.0 * global_1.eta) {
        t = -pv / kv;
    }
    s += t;
    goto L10;
} /* realit_ */

/* Subroutine */
static void calcsc_(integer *type,
                    v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg)
{
/* THIS ROUTINE CALCULATES SCALAR QUANTITIES USED TO */
/* COMPUTE THE NEXT K POLYNOMIAL AND NEW ESTIMATES OF */
/* THE QUADRATIC COEFFICIENTS. */
/* TYPE - INTEGER VARIABLE SET HERE INDICATING HOW THE */
/* CALCULATIONS ARE NORMALIZED TO AVOID OVERFLOW */
/* SYNTHETIC DIVISION OF K BY THE QUADRATIC 1,U,V */
    quadsd_(&global_1.n, &global_1.u, &global_1.v, global_1.k, global_1.qk, &global_1.c, &global_1.d);
    if (abs(global_1.c) > abs(global_1.k[global_1.n - 1]) * 100.0 * global_1.eta) {
        goto L10;
    }
    if (abs(global_1.d) > abs(global_1.k[global_1.n - 2]) * 100.0 * global_1.eta) {
        goto L10;
    }
    *type = 3;
/* TYPE=3 INDICATES THE QUADRATIC IS ALMOST A FACTOR */
/* OF K */
    return;
L10:
    if (abs(global_1.d) < abs(global_1.c)) {
        goto L20;
    }
    *type = 2;
/* TYPE=2 INDICATES THAT ALL FORMULAS ARE DIVIDED BY D */
    global_1.e = global_1.a / global_1.d;
    global_1.f = global_1.c / global_1.d;
    global_1.g = global_1.u * global_1.b;
    global_1.h = global_1.v * global_1.b;
    global_1.a3 = (global_1.a + global_1.g) * global_1.e + global_1.h * (global_1.b / global_1.d);
    global_1.a1 = global_1.b * global_1.f - global_1.a;
    global_1.a7 = (global_1.f + global_1.u) * global_1.a + global_1.h;
    return;
L20:
    *type = 1;
/* TYPE=1 INDICATES THAT ALL FORMULAS ARE DIVIDED BY C */
    global_1.e = global_1.a / global_1.c;
    global_1.f = global_1.d / global_1.c;
    global_1.g = global_1.u * global_1.e;
    global_1.h = global_1.v * global_1.b;
    global_1.a3 = global_1.a * global_1.e + (global_1.h / global_1.c + global_1.g) * global_1.b;
    global_1.a1 = global_1.b - global_1.a * (global_1.d / global_1.c);
    global_1.a7 = global_1.a + global_1.g * global_1.d + global_1.h * global_1.f;
    return;
} /* calcsc_ */

/* Subroutine */
static void nextk_(integer *type,
                    v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg)
{
    /* Local variables */
    doublereal temp;
    integer i;

/* COMPUTES THE NEXT K POLYNOMIALS USING SCALARS */
/* COMPUTED IN CALCSC */
    if (*type == 3) {
        goto L40;
    }
    temp = global_1.a;
    if (*type == 1) {
        temp = global_1.b;
    }
    if (abs(global_1.a1) > abs(temp) * global_1.eta * 10.0) {
        goto L20;
    }
/* IF A1 IS NEARLY ZERO THEN USE A SPECIAL FORM OF THE */
/* RECURRENCE */
    global_1.k[0] = 0.;
    global_1.k[1] = -global_1.a7 * global_1.qp[0];
    for (i = 3; i <= global_1.n; ++i) {
        global_1.k[i - 1] = global_1.a3 * global_1.qk[i - 3] - global_1.a7 * global_1.qp[i - 2];
    }
    return;
/* USE SCALED FORM OF THE RECURRENCE */
L20:
    global_1.a7 /= global_1.a1;
    global_1.a3 /= global_1.a1;
    global_1.k[0] = global_1.qp[0];
    global_1.k[1] = global_1.qp[1] - global_1.a7 * global_1.qp[0];
    for (i = 3; i <= global_1.n; ++i) {
        global_1.k[i - 1] = global_1.a3 * global_1.qk[i - 3] - global_1.a7 * global_1.qp[i - 2] + global_1.qp[i - 1];
    }
    return;
/* USE UNSCALED FORM OF THE RECURRENCE IF TYPE IS 3 */
L40:
    global_1.k[0] = 0.;
    global_1.k[1] = 0.;
    for (i = 3; i <= global_1.n; ++i) {
        global_1.k[i - 1] = global_1.qk[i - 3];
    }
} /* nextk_ */

/* Subroutine */
static void newest_(integer *type, doublereal *uu, doublereal *vv,
                    v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg)
{
    doublereal temp, a4, a5, b1, b2, c1, c2, c3, c4;

/* COMPUTE NEW ESTIMATES OF THE QUADRATIC COEFFICIENTS */
/* USING THE SCALARS COMPUTED IN CALCSC. */
/* USE FORMULAS APPROPRIATE TO SETTING OF TYPE. */
    if (*type == 3) {
        goto L30;
    }
    if (*type == 2) {
        goto L10;
    }
    a4 = global_1.a + global_1.u * global_1.b + global_1.h * global_1.f;
    a5 = global_1.c + (global_1.u + global_1.v * global_1.f) * global_1.d;
    goto L20;
L10:
    a4 = (global_1.a + global_1.g) * global_1.f + global_1.h;
    a5 = (global_1.f + global_1.u) * global_1.c + global_1.v * global_1.d;
/* EVALUATE NEW QUADRATIC COEFFICIENTS. */
L20:
    b1 = -global_1.k[global_1.n - 1] / global_1.p[global_1.nn - 1];
    b2 = -(global_1.k[global_1.n - 2] + b1 * global_1.p[global_1.n - 1]) / global_1.p[global_1.nn - 1];
    c1 = global_1.v * b2 * global_1.a1;
    c2 = b1 * global_1.a7;
    c3 = b1 * b1 * global_1.a3;
    c4 = c1 - c2 - c3;
    temp = a5 + b1 * a4 - c4;
    if (temp == 0.) {
        goto L30;
    }
    *uu = global_1.u - (global_1.u * (c3 + c2) + global_1.v * (b1 * global_1.a1 + b2 * global_1.a7)) / temp;
    *vv = global_1.v * (c4 / temp + 1.0);
    return;
/* IF TYPE=3 THE QUADRATIC IS ZEROED */
L30:
    *uu = 0.;
    *vv = 0.;
    return;
} /* newest_ */

/* Subroutine */
static void quadsd_(
  integer *nn, doublereal *u, doublereal *v,
  doublereal *p, doublereal *q, doublereal *a, doublereal *b)
{
    /* Local variables */
    doublereal c;
    integer i;

/* DIVIDES P BY THE QUADRATIC  1,U,V  PLACING THE */
/* QUOTIENT IN Q AND THE REMAINDER IN A,B */

    *b = p[0];
    q[0] = *b;
    *a = p[1] - *u * *b;
    q[1] = *a;
    for (i = 2; i < *nn; ++i) {
        c = p[i] - *u * *a - *v * *b;
        q[i] = c;
        *b = *a;
        *a = c;
    }
    return;
} /* quadsd_ */

/* Subroutine */
static void quad_(
  doublereal *a, doublereal *b1, doublereal *c,
  doublereal *sr, doublereal *si, doublereal *lr, doublereal *li
  )
{
    /* Local variables */
    doublereal b, d, e;

/* CALCULATE THE ZEROS OF THE QUADRATIC A*Z**2+B1*Z+C. */
/* THE QUADRATIC FORMULA, MODIFIED TO AVOID */
/* OVERFLOW, IS USED TO FIND THE LARGER ZERO IF THE */
/* ZEROS ARE REAL AND BOTH ZEROS ARE COMPLEX. */
/* THE SMALLER REAL ZERO IS FOUND DIRECTLY FROM THE */
/* PRODUCT OF THE ZEROS C/A. */
    if (*a != 0.) {
        goto L20;
    }
    *sr = 0.;
    if (*b1 != 0.) {
        *sr = -(*c) / *b1;
    }
    *lr = 0.;
L10:
    *si = 0.;
    *li = 0.;
    return;
L20:
    if (*c == 0.) {
        *sr = 0.;
        *lr = -(*b1) / *a;
        goto L10;
    }
/* COMPUTE DISCRIMINANT AVOIDING OVERFLOW */
    b = *b1 / 2.;
    if (abs(b) >= abs(*c)) {
        e = 1. - *a / b * (*c / b);
        d = sqrt(abs(e)) * abs(b);
    }
    else {
        e = *a;
        if (*c < 0.) {
            e = -(*a);
        }
        e = b * (b / abs(*c)) - e;
        d = sqrt(abs(e)) * sqrt(abs(*c));
    }
    if (e < 0.) {
        goto L60;
    }
/* REAL ZEROS */
    if (b >= 0.) {
        d = -d;
    }
    *lr = (-b + d) / *a;
    *sr = 0.;
    if (*lr != 0.) {
        *sr = *c / *lr / *a;
    }
    goto L10;
/* COMPLEX CONJUGATE ZEROS */
L60:
    *sr = -b / *a;
    *lr = *sr;
    *si = abs(d / *a);
    *li = -(*si);
} /* quad_ */