1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
|
#include "v3p_netlib.h"
#undef abs
#undef min
#undef max
#include <math.h>
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define min(a,b) ((a) <= (b) ? (a) : (b))
#define max(a,b) ((a) >= (b) ? (a) : (b))
static void calcsc_(integer *type,
v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg);
static void fxshfr_(integer *l2, integer *nz,
v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg);
static void newest_(integer *type, doublereal *uu, doublereal *vv,
v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg);
static void nextk_(integer *type,
v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg);
static void quadit_(doublereal *uu, doublereal *vv, integer *nz,
v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg);
static void realit_(doublereal *sss, integer *nz, integer *iflag,
v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg);
static void quadsd_(integer *nn, doublereal *u, doublereal *v,
doublereal *p, doublereal *q, doublereal *a,
doublereal *b);
static void quad_(doublereal *a, doublereal *b1, doublereal *c,
doublereal *sr, doublereal *si, doublereal *lr,
doublereal *li);
#define global_1 (*v3p_netlib_rpoly_global_arg)
/* Table of constant values */
static doublereal c_b41 = 1.;
#ifdef _MSC_VER
// This needs to be before the start of the function that contains the offending code
# pragma warning ( disable : 4756)
#endif
/* ====================================================================== */
/* NIST Guide to Available Math Software. */
/* Fullsource for module 493 from package TOMS. */
/* Retrieved from NETLIB on Wed Jul 3 11:47:53 1996. */
/* ====================================================================== */
/* Subroutine */ void rpoly_(
doublereal* op, integer* degree,
doublereal* zeror, doublereal* zeroi,
logical* fail,
v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg
)
{
/* Builtin functions */
double log(doublereal), pow_di(doublereal *, integer *), exp(doublereal);
/* System generated locals */
integer i__1;
/* Local variables */
doublereal base;
doublereal temp[101];
real cosr, sinr;
integer i, j, l;
doublereal t;
real x, infin;
logical zerok;
doublereal aa, bb, cc;
real df, ff;
integer jj;
real sc, lo, dx, pt[101], xm;
integer nz;
doublereal factor;
real xx, yy, smalno;
integer nm1;
real bnd, min_, max_;
integer cnt;
real xxx;
/* FINDS THE ZEROS OF A REAL POLYNOMIAL */
/* OP - DOUBLE PRECISION VECTOR OF COEFFICIENTS IN */
/* ORDER OF DECREASING POWERS. */
/* DEGREE - INTEGER DEGREE OF POLYNOMIAL. */
/* ZEROR, ZEROI - OUTPUT DOUBLE PRECISION VECTORS OF */
/* REAL AND IMAGINARY PARTS OF THE */
/* ZEROS. */
/* FAIL - OUTPUT LOGICAL PARAMETER, TRUE ONLY IF */
/* LEADING COEFFICIENT IS ZERO OR IF RPOLY */
/* HAS FOUND FEWER THAN DEGREE ZEROS. */
/* IN THE LATTER CASE DEGREE IS RESET TO */
/* THE NUMBER OF ZEROS FOUND. */
/* TO CHANGE THE SIZE OF POLYNOMIALS WHICH CAN BE */
/* SOLVED, RESET THE DIMENSIONS OF THE ARRAYS IN THE */
/* COMMON AREA AND IN THE FOLLOWING DECLARATIONS. */
/* THE SUBROUTINE USES SINGLE PRECISION CALCULATIONS */
/* FOR SCALING, BOUNDS AND ERROR CALCULATIONS. ALL */
/* CALCULATIONS FOR THE ITERATIONS ARE DONE IN DOUBLE */
/* PRECISION. */
/* THE FOLLOWING STATEMENTS SET MACHINE CONSTANTS USED */
/* IN VARIOUS PARTS OF THE PROGRAM. THE MEANING OF THE */
/* FOUR CONSTANTS ARE... */
/* ETA THE MAXIMUM RELATIVE REPRESENTATION ERROR */
/* WHICH CAN BE DESCRIBED AS THE SMALLEST */
/* POSITIVE FLOATING POINT NUMBER SUCH THAT */
/* 1.D0+ETA IS GREATER THAN 1. */
/* INFIN THE LARGEST FLOATING-POINT NUMBER. */
/* SMALNO THE SMALLEST POSITIVE FLOATING-POINT NUMBER */
/* IF THE EXPONENT RANGE DIFFERS IN SINGLE AND */
/* DOUBLE PRECISION THEN SMALNO AND INFIN */
/* SHOULD INDICATE THE SMALLER RANGE. */
/* BASE THE BASE OF THE FLOATING-POINT NUMBER */
/* SYSTEM USED. */
/* THE VALUES BELOW CORRESPOND TO THE BURROUGHS B6700 */
/* changed for sparc, but these seem better -- awf */
base = 2.0;
global_1.eta = 2.23e-16f;
infin = 3.40282346638528860e+38f;
smalno = 1e-33f;
/* ARE AND MRE REFER TO THE UNIT ERROR IN + AND * */
/* RESPECTIVELY. THEY ARE ASSUMED TO BE THE SAME AS */
/* ETA. */
global_1.are = global_1.eta;
global_1.mre = global_1.eta;
lo = smalno / global_1.eta;
/* INITIALIZATION OF CONSTANTS FOR SHIFT ROTATION */
xx = 0.70710678f;
yy = -xx;
cosr = -0.069756474f;
sinr = 0.99756405f;
*fail = FALSE_;
global_1.n = *degree;
global_1.nn = global_1.n + 1;
/* ALGORITHM FAILS IF THE LEADING COEFFICIENT IS ZERO. */
if (op[0] == 0.) {
*fail = TRUE_;
*degree = 0;
return;
}
/* REMOVE THE ZEROS AT THE ORIGIN IF ANY */
while (op[global_1.nn - 1] == 0.) {
j = *degree - global_1.n;
zeror[j] = 0.;
zeroi[j] = 0.;
--global_1.nn;
--global_1.n;
}
/* MAKE A COPY OF THE COEFFICIENTS */
for (i = 0; i < global_1.nn; ++i) {
global_1.p[i] = op[i];
}
/* START THE ALGORITHM FOR ONE ZERO */
L40:
if (global_1.n > 2) {
goto L60;
}
if (global_1.n < 1) {
return;
}
/* CALCULATE THE FINAL ZERO OR PAIR OF ZEROS */
if (global_1.n != 2) {
zeror[*degree-1] = -global_1.p[1] / global_1.p[0];
zeroi[*degree-1] = 0.;
return;
}
quad_(global_1.p, &global_1.p[1], &global_1.p[2],
&zeror[*degree-2], &zeroi[*degree-2], &zeror[*degree-1], &zeroi[*degree-1]);
return;
/* FIND LARGEST AND SMALLEST MODULI OF COEFFICIENTS. */
L60:
max_ = 0.0f;
min_ = infin;
for (i = 0; i < global_1.nn; ++i) {
x = (real)abs(global_1.p[i]);
if (x > max_) {
max_ = x;
}
if (x != 0.0f && x < min_) {
min_ = x;
}
}
/* SCALE IF THERE ARE LARGE OR VERY SMALL COEFFICIENTS */
/* COMPUTES A SCALE FACTOR TO MULTIPLY THE */
/* COEFFICIENTS OF THE POLYNOMIAL. THE SCALING IS DONE */
/* TO AVOID OVERFLOW AND TO AVOID UNDETECTED UNDERFLOW */
/* INTERFERING WITH THE CONVERGENCE CRITERION. */
/* THE FACTOR IS A POWER OF THE BASE */
sc = lo / min_;
if (sc > 1.0f) {
goto L80;
}
if (max_ < 10.0f) {
goto L110;
}
if (sc == 0.0f) {
sc = smalno;
}
goto L90;
L80:
if (infin / sc < max_) {
goto L110;
}
L90:
l = (int)(log((doublereal)sc) / log(base) + 0.5);
factor = base;
factor = pow_di(&factor, &l);
if (factor == 1.) {
goto L110;
}
for (i = 0; i < global_1.nn; ++i) {
global_1.p[i] *= factor;
}
/* COMPUTE LOWER BOUND ON MODULI OF ZEROS. */
L110:
for (i = 0; i < global_1.nn; ++i) {
pt[i] = (real)abs(global_1.p[i]);
}
pt[global_1.nn - 1] = -pt[global_1.nn - 1];
/* COMPUTE UPPER ESTIMATE OF BOUND */
x = (real)exp((log(-pt[global_1.nn - 1]) - log(pt[0])) / global_1.n);
if (pt[global_1.n - 1] == 0.0f) {
goto L130;
}
/* IF NEWTON STEP AT THE ORIGIN IS BETTER, USE IT. */
xm = -pt[global_1.nn - 1] / pt[global_1.n - 1];
if (xm < x) {
x = xm;
}
/* CHOP THE INTERVAL (0,X) UNTIL FF .LE. 0 */
L130:
xm = x * 0.1f;
ff = pt[0];
for (i = 1; i < global_1.nn; ++i) {
ff = ff * xm + pt[i];
}
if (ff > 0.0f) {
x = xm;
goto L130;
}
dx = x;
/* DO NEWTON ITERATION UNTIL X CONVERGES TO TWO */
/* DECIMAL PLACES */
while (abs(dx/x) > 0.005f) {
ff = pt[0];
df = ff;
for (i = 1; i < global_1.n; ++i) {
ff = ff * x + pt[i];
df = df * x + ff;
}
ff = ff * x + pt[global_1.nn - 1];
dx = ff / df;
x -= dx;
}
bnd = x;
/* COMPUTE THE DERIVATIVE AS THE INITIAL K POLYNOMIAL */
/* AND DO 5 STEPS WITH NO SHIFT */
nm1 = global_1.n - 1;
for (i = 1; i < global_1.n; ++i) {
global_1.k[i] = (global_1.nn - i - 1) * global_1.p[i] / global_1.n;
}
global_1.k[0] = global_1.p[0];
aa = global_1.p[global_1.nn - 1];
bb = global_1.p[global_1.n - 1];
zerok = global_1.k[global_1.n - 1] == 0.;
for (jj = 1; jj <= 5; ++jj) {
cc = global_1.k[global_1.n - 1];
if (zerok) { /* USE UNSCALED FORM OF RECURRENCE */
for (i = 0; i < nm1; ++i) {
j = global_1.nn - i - 2;
global_1.k[j] = global_1.k[j - 1];
}
global_1.k[0] = 0.;
zerok = global_1.k[global_1.n - 1] == 0.;
}
else { /* USE SCALED FORM OF RECURRENCE */
t = -aa / cc;
for (i = 0; i < nm1; ++i) {
j = global_1.nn - i - 2;
global_1.k[j] = t * global_1.k[j - 1] + global_1.p[j];
}
global_1.k[0] = global_1.p[0];
zerok = abs(global_1.k[global_1.n - 1]) <= abs(bb) * global_1.eta * 10.0;
}
}
/* SAVE K FOR RESTARTS WITH NEW SHIFTS */
for (i = 0; i < global_1.n; ++i) {
temp[i] = global_1.k[i];
}
/* LOOP TO SELECT THE QUADRATIC CORRESPONDING TO EACH */
/* NEW SHIFT */
for (cnt = 1; cnt <= 20; ++cnt) {
/* QUADRATIC CORRESPONDS TO A DOUBLE SHIFT TO A */
/* NON-REAL POINT AND ITS COMPLEX CONJUGATE. THE POINT */
/* HAS MODULUS BND AND AMPLITUDE ROTATED BY 94 DEGREES */
/* FROM THE PREVIOUS SHIFT */
xxx = cosr * xx - sinr * yy;
yy = sinr * xx + cosr * yy;
xx = xxx;
global_1.sr = bnd * xx;
global_1.si = bnd * yy;
global_1.u = global_1.sr * -2.;
global_1.v = bnd;
/* SECOND STAGE CALCULATION, FIXED QUADRATIC */
i__1 = cnt * 20;
fxshfr_(&i__1, &nz, v3p_netlib_rpoly_global_arg);
if (nz == 0) {
goto L260;
}
/* THE SECOND STAGE JUMPS DIRECTLY TO ONE OF THE THIRD */
/* STAGE ITERATIONS AND RETURNS HERE IF SUCCESSFUL. */
/* DEFLATE THE POLYNOMIAL, STORE THE ZERO OR ZEROS AND */
/* RETURN TO THE MAIN ALGORITHM. */
j = *degree - global_1.n;
zeror[j] = global_1.szr;
zeroi[j] = global_1.szi;
global_1.nn -= nz;
global_1.n = global_1.nn - 1;
for (i = 0; i < global_1.nn; ++i) {
global_1.p[i] = global_1.qp[i];
}
if (nz == 1) {
goto L40;
}
zeror[j + 1] = global_1.lzr;
zeroi[j + 1] = global_1.lzi;
goto L40;
/* IF THE ITERATION IS UNSUCCESSFUL ANOTHER QUADRATIC */
/* IS CHOSEN AFTER RESTORING K */
L260:
for (i = 0; i < global_1.n; ++i) {
global_1.k[i] = temp[i];
}
}
/* RETURN WITH FAILURE IF NO CONVERGENCE WITH 20 */
/* SHIFTS */
*fail = TRUE_;
*degree -= global_1.n;
} /* rpoly_ */
/* Subroutine */
static void fxshfr_(integer *l2, integer *nz,
v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg)
{
/* Local variables */
integer type;
logical stry, vtry;
integer i, j, iflag;
doublereal s;
real betas, betav;
logical spass;
logical vpass;
doublereal ui, vi;
real ts, tv, vv;
real ots=0, otv=0, tss;
doublereal ss, oss, ovv, svu, svv;
real tvv;
/* COMPUTES UP TO L2 FIXED SHIFT K-POLYNOMIALS, */
/* TESTING FOR CONVERGENCE IN THE LINEAR OR QUADRATIC */
/* CASE. INITIATES ONE OF THE VARIABLE SHIFT */
/* ITERATIONS AND RETURNS WITH THE NUMBER OF ZEROS */
/* FOUND. */
/* L2 - LIMIT OF FIXED SHIFT STEPS */
/* NZ - NUMBER OF ZEROS FOUND */
*nz = 0;
betav = .25f;
betas = .25f;
oss = global_1.sr;
ovv = global_1.v;
/* EVALUATE POLYNOMIAL BY SYNTHETIC DIVISION */
quadsd_(&global_1.nn, &global_1.u, &global_1.v, global_1.p, global_1.qp, &global_1.a, &global_1.b);
calcsc_(&type, v3p_netlib_rpoly_global_arg);
for (j = 1; j <= *l2; ++j) {
/* CALCULATE NEXT K POLYNOMIAL AND ESTIMATE V */
nextk_(&type, v3p_netlib_rpoly_global_arg);
calcsc_(&type, v3p_netlib_rpoly_global_arg);
newest_(&type, &ui, &vi, v3p_netlib_rpoly_global_arg);
vv = (real)vi;
/* ESTIMATE S */
ss = 0.0;
if (global_1.k[global_1.n - 1] != 0.) {
ss = -global_1.p[global_1.nn - 1] / global_1.k[global_1.n - 1];
}
tv = 1.0f;
ts = 1.0f;
if (j == 1 || type == 3) {
goto L70;
}
/* COMPUTE RELATIVE MEASURES OF CONVERGENCE OF S AND V */
/* SEQUENCES */
if (vv != 0.0f) {
tv = (real)abs((vv - ovv) / vv);
}
if (ss != 0.0) {
ts = (real)abs((ss - oss) / ss);
}
/* IF DECREASING, MULTIPLY TWO MOST RECENT */
/* CONVERGENCE MEASURES */
tvv = 1.0f;
if (tv < otv) {
tvv = tv * otv;
}
tss = 1.0f;
if (ts < ots) {
tss = ts * ots;
}
/* COMPARE WITH CONVERGENCE CRITERIA */
vpass = tvv < betav;
spass = tss < betas;
if (! (spass || vpass)) {
goto L70;
}
/* AT LEAST ONE SEQUENCE HAS PASSED THE CONVERGENCE */
/* TEST. STORE VARIABLES BEFORE ITERATING */
svu = global_1.u;
svv = global_1.v;
for (i = 1; i <= global_1.n; ++i) {
global_1.svk[i - 1] = global_1.k[i - 1];
}
s = ss;
/* CHOOSE ITERATION ACCORDING TO THE FASTEST */
/* CONVERGING SEQUENCE */
vtry = FALSE_;
stry = FALSE_;
if (spass && (! vpass || tss < tvv)) {
goto L40;
}
L20:
quadit_(&ui, &vi, nz, v3p_netlib_rpoly_global_arg);
if (*nz > 0) {
return;
}
/* QUADRATIC ITERATION HAS FAILED. FLAG THAT IT HAS */
/* BEEN TRIED AND DECREASE THE CONVERGENCE CRITERION. */
vtry = TRUE_;
betav *= 0.25f;
/* TRY LINEAR ITERATION IF IT HAS NOT BEEN TRIED AND */
/* THE S SEQUENCE IS CONVERGING */
if (stry || ! spass) {
goto L50;
}
for (i = 1; i <= global_1.n; ++i) {
global_1.k[i - 1] = global_1.svk[i - 1];
}
L40:
realit_(&s, nz, &iflag, v3p_netlib_rpoly_global_arg);
if (*nz > 0) {
return;
}
/* LINEAR ITERATION HAS FAILED. FLAG THAT IT HAS BEEN */
/* TRIED AND DECREASE THE CONVERGENCE CRITERION */
stry = TRUE_;
betas *= 0.25f;
/* IF LINEAR ITERATION SIGNALS AN ALMOST DOUBLE REAL */
/* ZERO ATTEMPT QUADRATIC ITERATION */
if (iflag != 0) {
ui = -(s + s);
vi = s * s;
goto L20;
}
/* RESTORE VARIABLES */
L50:
global_1.u = svu;
global_1.v = svv;
for (i = 1; i <= global_1.n; ++i) {
global_1.k[i - 1] = global_1.svk[i - 1];
}
/* TRY QUADRATIC ITERATION IF IT HAS NOT BEEN TRIED */
/* AND THE V SEQUENCE IS CONVERGING */
if (vpass && ! vtry) {
goto L20;
}
/* RECOMPUTE QP AND SCALAR VALUES TO CONTINUE THE */
/* SECOND STAGE */
quadsd_(&global_1.nn, &global_1.u, &global_1.v, global_1.p, global_1.qp, &global_1.a, &global_1.b);
calcsc_(&type, v3p_netlib_rpoly_global_arg);
L70:
ovv = vv;
oss = ss;
otv = tv;
ots = ts;
}
} /* fxshfr_ */
/* Subroutine */
static void quadit_(doublereal *uu, doublereal *vv, integer *nz,
v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg)
{
/* Local variables */
integer type, i, j;
doublereal t;
logical tried;
real ee;
doublereal ui, vi;
real mp, zm;
real relstp=0, omp=0;
/* VARIABLE-SHIFT K-POLYNOMIAL ITERATION FOR A */
/* QUADRATIC FACTOR CONVERGES ONLY IF THE ZEROS ARE */
/* EQUIMODULAR OR NEARLY SO. */
/* UU,VV - COEFFICIENTS OF STARTING QUADRATIC */
/* NZ - NUMBER OF ZERO FOUND */
*nz = 0;
tried = FALSE_;
global_1.u = *uu;
global_1.v = *vv;
j = 0;
/* MAIN LOOP */
L10:
quad_(&c_b41, &global_1.u, &global_1.v, &global_1.szr, &global_1.szi, &global_1.lzr, &global_1.lzi);
/* RETURN IF ROOTS OF THE QUADRATIC ARE REAL AND NOT */
/* CLOSE TO MULTIPLE OR NEARLY EQUAL AND OF OPPOSITE */
/* SIGN */
if (abs(abs(global_1.szr) - abs(global_1.lzr)) > abs(global_1.lzr) * .01) {
return;
}
/* EVALUATE POLYNOMIAL BY QUADRATIC SYNTHETIC DIVISION */
quadsd_(&global_1.nn, &global_1.u, &global_1.v, global_1.p, global_1.qp, &global_1.a, &global_1.b);
mp = (real)abs(global_1.a - global_1.szr * global_1.b)
+ (real)abs(global_1.szi * global_1.b);
/* COMPUTE A RIGOROUS BOUND ON THE ROUNDING ERROR IN */
/* EVALUTING P */
zm = (real)sqrt(abs(global_1.v));
ee = (real)abs(global_1.qp[0]) * 2.0f;
t = -global_1.szr * global_1.b;
for (i = 2; i <= global_1.n; ++i) {
ee = ee * zm + (real)abs(global_1.qp[i - 1]);
}
ee = ee * zm + (real)abs(global_1.a + t);
ee = (real)((global_1.mre * 5.0 + global_1.are * 4.0) * ee
- (global_1.mre * 5.0 + global_1.are * 2.0) * (abs(global_1.a + t) + abs(global_1.b) * zm)
+ global_1.are * 2.0 * abs(t));
/* ITERATION HAS CONVERGED SUFFICIENTLY IF THE */
/* POLYNOMIAL VALUE IS LESS THAN 20 TIMES THIS BOUND */
if (mp <= ee * 20.0f) {
*nz = 2;
return;
}
/* STOP ITERATION AFTER 20 STEPS */
if (++j > 20) {
return;
}
if (j < 2) {
goto L50;
}
if (relstp > 0.01f || mp < omp || tried) {
goto L50;
}
/* A CLUSTER APPEARS TO BE STALLING THE CONVERGENCE. */
/* FIVE FIXED SHIFT STEPS ARE TAKEN WITH A U,V CLOSE */
/* TO THE CLUSTER */
if (relstp < global_1.eta) {
relstp = global_1.eta;
}
relstp = (float)sqrt(relstp);
global_1.u -= global_1.u * relstp;
global_1.v += global_1.v * relstp;
quadsd_(&global_1.nn, &global_1.u, &global_1.v, global_1.p, global_1.qp, &global_1.a, &global_1.b);
for (i = 1; i <= 5; ++i) {
calcsc_(&type, v3p_netlib_rpoly_global_arg);
nextk_(&type, v3p_netlib_rpoly_global_arg);
}
tried = TRUE_;
j = 0;
L50:
omp = mp;
/* CALCULATE NEXT K POLYNOMIAL AND NEW U AND V */
calcsc_(&type, v3p_netlib_rpoly_global_arg);
nextk_(&type, v3p_netlib_rpoly_global_arg);
calcsc_(&type, v3p_netlib_rpoly_global_arg);
newest_(&type, &ui, &vi, v3p_netlib_rpoly_global_arg);
/* IF VI IS ZERO THE ITERATION IS NOT CONVERGING */
if (vi == 0.) {
return;
}
relstp = (real)abs((vi - global_1.v) / vi);
global_1.u = ui;
global_1.v = vi;
goto L10;
} /* quadit_ */
/* Subroutine */
static void realit_(doublereal *sss, integer *nz, integer *iflag,
v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg)
{
/* Local variables */
integer i, j;
doublereal s, t=0;
real ee, mp, ms;
doublereal kv, pv;
real omp=0;
/* VARIABLE-SHIFT H POLYNOMIAL ITERATION FOR A REAL */
/* ZERO. */
/* SSS - STARTING ITERATE */
/* NZ - NUMBER OF ZERO FOUND */
/* IFLAG - FLAG TO INDICATE A PAIR OF ZEROS NEAR REAL */
/* AXIS. */
*nz = 0;
s = *sss;
*iflag = 0;
j = 0;
/* MAIN LOOP */
L10:
pv = global_1.p[0];
/* EVALUATE P AT S */
global_1.qp[0] = pv;
for (i = 2; i <= global_1.nn; ++i) {
pv = pv * s + global_1.p[i - 1];
global_1.qp[i - 1] = pv;
}
mp = (real)abs(pv);
/* COMPUTE A RIGOROUS BOUND ON THE ERROR IN EVALUATING */
/* P */
ms = (real)abs(s);
ee = (real)(global_1.mre / (global_1.are + global_1.mre) * abs(global_1.qp[0]));
for (i = 2; i <= global_1.nn; ++i) {
ee = ee * ms + (real)abs(global_1.qp[i - 1]);
}
/* ITERATION HAS CONVERGED SUFFICIENTLY IF THE */
/* POLYNOMIAL VALUE IS LESS THAN 20 TIMES THIS BOUND */
if (mp <= ((global_1.are + global_1.mre) * ee - global_1.mre * mp) * 20.0f) {
*nz = 1;
global_1.szr = s;
global_1.szi = 0.;
return;
}
/* STOP ITERATION AFTER 10 STEPS */
if (++j > 10) {
return;
}
if (j < 2) {
goto L50;
}
if (abs(t) > abs(s - t) * 0.001 || mp <= omp) {
goto L50;
}
/* A CLUSTER OF ZEROS NEAR THE REAL AXIS HAS BEEN */
/* ENCOUNTERED RETURN WITH IFLAG SET TO INITIATE A */
/* QUADRATIC ITERATION */
*iflag = 1;
*sss = s;
return;
/* RETURN IF THE POLYNOMIAL VALUE HAS INCREASED */
/* SIGNIFICANTLY */
L50:
omp = mp;
/* COMPUTE T, THE NEXT POLYNOMIAL, AND THE NEW ITERATE */
kv = global_1.k[0];
global_1.qk[0] = kv;
for (i = 2; i <= global_1.n; ++i) {
kv = kv * s + global_1.k[i - 1];
global_1.qk[i - 1] = kv;
}
if (abs(kv) <= abs(global_1.k[global_1.n - 1]) * 10.0 * global_1.eta) {
goto L80;
}
/* USE THE SCALED FORM OF THE RECURRENCE IF THE VALUE */
/* OF K AT S IS NONZERO */
t = -pv / kv;
global_1.k[0] = global_1.qp[0];
for (i = 2; i <= global_1.n; ++i) {
global_1.k[i - 1] = t * global_1.qk[i - 2] + global_1.qp[i - 1];
}
goto L100;
/* USE UNSCALED FORM */
L80:
global_1.k[0] = 0.;
for (i = 2; i <= global_1.n; ++i) {
global_1.k[i - 1] = global_1.qk[i - 2];
}
L100:
kv = global_1.k[0];
for (i = 2; i <= global_1.n; ++i) {
kv = kv * s + global_1.k[i - 1];
}
t = 0.;
if (abs(kv) > abs(global_1.k[global_1.n - 1]) * 10.0 * global_1.eta) {
t = -pv / kv;
}
s += t;
goto L10;
} /* realit_ */
/* Subroutine */
static void calcsc_(integer *type,
v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg)
{
/* THIS ROUTINE CALCULATES SCALAR QUANTITIES USED TO */
/* COMPUTE THE NEXT K POLYNOMIAL AND NEW ESTIMATES OF */
/* THE QUADRATIC COEFFICIENTS. */
/* TYPE - INTEGER VARIABLE SET HERE INDICATING HOW THE */
/* CALCULATIONS ARE NORMALIZED TO AVOID OVERFLOW */
/* SYNTHETIC DIVISION OF K BY THE QUADRATIC 1,U,V */
quadsd_(&global_1.n, &global_1.u, &global_1.v, global_1.k, global_1.qk, &global_1.c, &global_1.d);
if (abs(global_1.c) > abs(global_1.k[global_1.n - 1]) * 100.0 * global_1.eta) {
goto L10;
}
if (abs(global_1.d) > abs(global_1.k[global_1.n - 2]) * 100.0 * global_1.eta) {
goto L10;
}
*type = 3;
/* TYPE=3 INDICATES THE QUADRATIC IS ALMOST A FACTOR */
/* OF K */
return;
L10:
if (abs(global_1.d) < abs(global_1.c)) {
goto L20;
}
*type = 2;
/* TYPE=2 INDICATES THAT ALL FORMULAS ARE DIVIDED BY D */
global_1.e = global_1.a / global_1.d;
global_1.f = global_1.c / global_1.d;
global_1.g = global_1.u * global_1.b;
global_1.h = global_1.v * global_1.b;
global_1.a3 = (global_1.a + global_1.g) * global_1.e + global_1.h * (global_1.b / global_1.d);
global_1.a1 = global_1.b * global_1.f - global_1.a;
global_1.a7 = (global_1.f + global_1.u) * global_1.a + global_1.h;
return;
L20:
*type = 1;
/* TYPE=1 INDICATES THAT ALL FORMULAS ARE DIVIDED BY C */
global_1.e = global_1.a / global_1.c;
global_1.f = global_1.d / global_1.c;
global_1.g = global_1.u * global_1.e;
global_1.h = global_1.v * global_1.b;
global_1.a3 = global_1.a * global_1.e + (global_1.h / global_1.c + global_1.g) * global_1.b;
global_1.a1 = global_1.b - global_1.a * (global_1.d / global_1.c);
global_1.a7 = global_1.a + global_1.g * global_1.d + global_1.h * global_1.f;
return;
} /* calcsc_ */
/* Subroutine */
static void nextk_(integer *type,
v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg)
{
/* Local variables */
doublereal temp;
integer i;
/* COMPUTES THE NEXT K POLYNOMIALS USING SCALARS */
/* COMPUTED IN CALCSC */
if (*type == 3) {
goto L40;
}
temp = global_1.a;
if (*type == 1) {
temp = global_1.b;
}
if (abs(global_1.a1) > abs(temp) * global_1.eta * 10.0) {
goto L20;
}
/* IF A1 IS NEARLY ZERO THEN USE A SPECIAL FORM OF THE */
/* RECURRENCE */
global_1.k[0] = 0.;
global_1.k[1] = -global_1.a7 * global_1.qp[0];
for (i = 3; i <= global_1.n; ++i) {
global_1.k[i - 1] = global_1.a3 * global_1.qk[i - 3] - global_1.a7 * global_1.qp[i - 2];
}
return;
/* USE SCALED FORM OF THE RECURRENCE */
L20:
global_1.a7 /= global_1.a1;
global_1.a3 /= global_1.a1;
global_1.k[0] = global_1.qp[0];
global_1.k[1] = global_1.qp[1] - global_1.a7 * global_1.qp[0];
for (i = 3; i <= global_1.n; ++i) {
global_1.k[i - 1] = global_1.a3 * global_1.qk[i - 3] - global_1.a7 * global_1.qp[i - 2] + global_1.qp[i - 1];
}
return;
/* USE UNSCALED FORM OF THE RECURRENCE IF TYPE IS 3 */
L40:
global_1.k[0] = 0.;
global_1.k[1] = 0.;
for (i = 3; i <= global_1.n; ++i) {
global_1.k[i - 1] = global_1.qk[i - 3];
}
} /* nextk_ */
/* Subroutine */
static void newest_(integer *type, doublereal *uu, doublereal *vv,
v3p_netlib_rpoly_global_t* v3p_netlib_rpoly_global_arg)
{
doublereal temp, a4, a5, b1, b2, c1, c2, c3, c4;
/* COMPUTE NEW ESTIMATES OF THE QUADRATIC COEFFICIENTS */
/* USING THE SCALARS COMPUTED IN CALCSC. */
/* USE FORMULAS APPROPRIATE TO SETTING OF TYPE. */
if (*type == 3) {
goto L30;
}
if (*type == 2) {
goto L10;
}
a4 = global_1.a + global_1.u * global_1.b + global_1.h * global_1.f;
a5 = global_1.c + (global_1.u + global_1.v * global_1.f) * global_1.d;
goto L20;
L10:
a4 = (global_1.a + global_1.g) * global_1.f + global_1.h;
a5 = (global_1.f + global_1.u) * global_1.c + global_1.v * global_1.d;
/* EVALUATE NEW QUADRATIC COEFFICIENTS. */
L20:
b1 = -global_1.k[global_1.n - 1] / global_1.p[global_1.nn - 1];
b2 = -(global_1.k[global_1.n - 2] + b1 * global_1.p[global_1.n - 1]) / global_1.p[global_1.nn - 1];
c1 = global_1.v * b2 * global_1.a1;
c2 = b1 * global_1.a7;
c3 = b1 * b1 * global_1.a3;
c4 = c1 - c2 - c3;
temp = a5 + b1 * a4 - c4;
if (temp == 0.) {
goto L30;
}
*uu = global_1.u - (global_1.u * (c3 + c2) + global_1.v * (b1 * global_1.a1 + b2 * global_1.a7)) / temp;
*vv = global_1.v * (c4 / temp + 1.0);
return;
/* IF TYPE=3 THE QUADRATIC IS ZEROED */
L30:
*uu = 0.;
*vv = 0.;
return;
} /* newest_ */
/* Subroutine */
static void quadsd_(
integer *nn, doublereal *u, doublereal *v,
doublereal *p, doublereal *q, doublereal *a, doublereal *b)
{
/* Local variables */
doublereal c;
integer i;
/* DIVIDES P BY THE QUADRATIC 1,U,V PLACING THE */
/* QUOTIENT IN Q AND THE REMAINDER IN A,B */
*b = p[0];
q[0] = *b;
*a = p[1] - *u * *b;
q[1] = *a;
for (i = 2; i < *nn; ++i) {
c = p[i] - *u * *a - *v * *b;
q[i] = c;
*b = *a;
*a = c;
}
return;
} /* quadsd_ */
/* Subroutine */
static void quad_(
doublereal *a, doublereal *b1, doublereal *c,
doublereal *sr, doublereal *si, doublereal *lr, doublereal *li
)
{
/* Local variables */
doublereal b, d, e;
/* CALCULATE THE ZEROS OF THE QUADRATIC A*Z**2+B1*Z+C. */
/* THE QUADRATIC FORMULA, MODIFIED TO AVOID */
/* OVERFLOW, IS USED TO FIND THE LARGER ZERO IF THE */
/* ZEROS ARE REAL AND BOTH ZEROS ARE COMPLEX. */
/* THE SMALLER REAL ZERO IS FOUND DIRECTLY FROM THE */
/* PRODUCT OF THE ZEROS C/A. */
if (*a != 0.) {
goto L20;
}
*sr = 0.;
if (*b1 != 0.) {
*sr = -(*c) / *b1;
}
*lr = 0.;
L10:
*si = 0.;
*li = 0.;
return;
L20:
if (*c == 0.) {
*sr = 0.;
*lr = -(*b1) / *a;
goto L10;
}
/* COMPUTE DISCRIMINANT AVOIDING OVERFLOW */
b = *b1 / 2.;
if (abs(b) >= abs(*c)) {
e = 1. - *a / b * (*c / b);
d = sqrt(abs(e)) * abs(b);
}
else {
e = *a;
if (*c < 0.) {
e = -(*a);
}
e = b * (b / abs(*c)) - e;
d = sqrt(abs(e)) * sqrt(abs(*c));
}
if (e < 0.) {
goto L60;
}
/* REAL ZEROS */
if (b >= 0.) {
d = -d;
}
*lr = (-b + d) / *a;
*sr = 0.;
if (*lr != 0.) {
*sr = *c / *lr / *a;
}
goto L10;
/* COMPLEX CONJUGATE ZEROS */
L60:
*sr = -b / *a;
*lr = *sr;
*si = abs(d / *a);
*li = -(*si);
} /* quad_ */
|