1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
|
SUBROUTINE RPOLY(OP, DEGREE, ZEROR, ZEROI, RPO 10
* FAIL)
C FINDS THE ZEROS OF A REAL POLYNOMIAL
C OP - DOUBLE PRECISION VECTOR OF COEFFICIENTS IN
C ORDER OF DECREASING POWERS.
C DEGREE - INTEGER DEGREE OF POLYNOMIAL.
C ZEROR, ZEROI - OUTPUT DOUBLE PRECISION VECTORS OF
C REAL AND IMAGINARY PARTS OF THE
C ZEROS.
C FAIL - OUTPUT LOGICAL PARAMETER, TRUE ONLY IF
C LEADING COEFFICIENT IS ZERO OR IF RPOLY
C HAS FOUND FEWER THAN DEGREE ZEROS.
C IN THE LATTER CASE DEGREE IS RESET TO
C THE NUMBER OF ZEROS FOUND.
C TO CHANGE THE SIZE OF POLYNOMIALS WHICH CAN BE
C SOLVED, RESET THE DIMENSIONS OF THE ARRAYS IN THE
C COMMON AREA AND IN THE FOLLOWING DECLARATIONS.
C THE SUBROUTINE USES SINGLE PRECISION CALCULATIONS
C FOR SCALING, BOUNDS AND ERROR CALCULATIONS. ALL
C CALCULATIONS FOR THE ITERATIONS ARE DONE IN DOUBLE
C PRECISION.
COMMON /GLOBAL/ P, QP, K, QK, SVK, SR, SI, U,
* V, A, B, C, D, A1, A2, A3, A6, A7, E, F, G,
* H, SZR, SZI, LZR, LZI, ETA, ARE, MRE, N, NN
DOUBLE PRECISION P(101), QP(101), K(101),
* QK(101), SVK(101), SR, SI, U, V, A, B, C, D,
* A1, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
* LZR, LZI
REAL ETA, ARE, MRE
INTEGER N, NN
DOUBLE PRECISION OP(101), TEMP(101),
* ZEROR(100), ZEROI(100), T, AA, BB, CC, DABS,
* FACTOR
REAL PT(101), LO, MAX, MIN, XX, YY, COSR,
* SINR, XXX, X, SC, BND, XM, FF, DF, DX, INFIN,
* SMALNO, BASE
INTEGER DEGREE, CNT, NZ, I, J, JJ, NM1
LOGICAL FAIL, ZEROK
C THE FOLLOWING STATEMENTS SET MACHINE CONSTANTS USED
C IN VARIOUS PARTS OF THE PROGRAM. THE MEANING OF THE
C FOUR CONSTANTS ARE...
C ETA THE MAXIMUM RELATIVE REPRESENTATION ERROR
C WHICH CAN BE DESCRIBED AS THE SMALLEST
C POSITIVE FLOATING POINT NUMBER SUCH THAT
C 1.D0+ETA IS GREATER THAN 1.
C INFINY THE LARGEST FLOATING-POINT NUMBER.
C SMALNO THE SMALLEST POSITIVE FLOATING-POINT NUMBER
C IF THE EXPONENT RANGE DIFFERS IN SINGLE AND
C DOUBLE PRECISION THEN SMALNO AND INFIN
C SHOULD INDICATE THE SMALLER RANGE.
C BASE THE BASE OF THE FLOATING-POINT NUMBER
C SYSTEM USED.
C THE VALUES BELOW CORRESPOND TO THE BURROUGHS B6700
BASE = 8.
ETA = .5*BASE**(1-26)
INFIN = 4.3E68
SMALNO = 1.0E-45
C ARE AND MRE REFER TO THE UNIT ERROR IN + AND *
C RESPECTIVELY. THEY ARE ASSUMED TO BE THE SAME AS
C ETA.
ARE = ETA
MRE = ETA
LO = SMALNO/ETA
C INITIALIZATION OF CONSTANTS FOR SHIFT ROTATION
XX = .70710678
YY = -XX
COSR = -.069756474
SINR = .99756405
FAIL = .FALSE.
N = DEGREE
NN = N + 1
C ALGORITHM FAILS IF THE LEADING COEFFICIENT IS ZERO.
IF (OP(1).NE.0.D0) GO TO 10
FAIL = .TRUE.
DEGREE = 0
RETURN
C REMOVE THE ZEROS AT THE ORIGIN IF ANY
10 IF (OP(NN).NE.0.0D0) GO TO 20
J = DEGREE - N + 1
ZEROR(J) = 0.D0
ZEROI(J) = 0.D0
NN = NN - 1
N = N - 1
GO TO 10
C MAKE A COPY OF THE COEFFICIENTS
20 DO 30 I=1,NN
P(I) = OP(I)
30 CONTINUE
C START THE ALGORITHM FOR ONE ZERO
40 IF (N.GT.2) GO TO 60
IF (N.LT.1) RETURN
C CALCULATE THE FINAL ZERO OR PAIR OF ZEROS
IF (N.EQ.2) GO TO 50
ZEROR(DEGREE) = -P(2)/P(1)
ZEROI(DEGREE) = 0.0D0
RETURN
50 CALL QUAD(P(1), P(2), P(3), ZEROR(DEGREE-1),
* ZEROI(DEGREE-1), ZEROR(DEGREE), ZEROI(DEGREE))
RETURN
C FIND LARGEST AND SMALLEST MODULI OF COEFFICIENTS.
60 MAX = 0.
MIN = INFIN
DO 70 I=1,NN
X = ABS(SNGL(P(I)))
IF (X.GT.MAX) MAX = X
IF (X.NE.0. .AND. X.LT.MIN) MIN = X
70 CONTINUE
C SCALE IF THERE ARE LARGE OR VERY SMALL COEFFICIENTS
C COMPUTES A SCALE FACTOR TO MULTIPLY THE
C COEFFICIENTS OF THE POLYNOMIAL. THE SCALING IS DONE
C TO AVOID OVERFLOW AND TO AVOID UNDETECTED UNDERFLOW
C INTERFERING WITH THE CONVERGENCE CRITERION.
C THE FACTOR IS A POWER OF THE BASE
SC = LO/MIN
IF (SC.GT.1.0) GO TO 80
IF (MAX.LT.10.) GO TO 110
IF (SC.EQ.0.) SC = SMALNO
GO TO 90
80 IF (INFIN/SC.LT.MAX) GO TO 110
90 L = ALOG(SC)/ALOG(BASE) + .5
FACTOR = (BASE*1.0D0)**L
IF (FACTOR.EQ.1.D0) GO TO 110
DO 100 I=1,NN
P(I) = FACTOR*P(I)
100 CONTINUE
C COMPUTE LOWER BOUND ON MODULI OF ZEROS.
110 DO 120 I=1,NN
PT(I) = ABS(SNGL(P(I)))
120 CONTINUE
PT(NN) = -PT(NN)
C COMPUTE UPPER ESTIMATE OF BOUND
X = EXP((ALOG(-PT(NN))-ALOG(PT(1)))/FLOAT(N))
IF (PT(N).EQ.0.) GO TO 130
C IF NEWTON STEP AT THE ORIGIN IS BETTER, USE IT.
XM = -PT(NN)/PT(N)
IF (XM.LT.X) X = XM
C CHOP THE INTERVAL (0,X) UNTIL FF .LE. 0
130 XM = X*.1
FF = PT(1)
DO 140 I=2,NN
FF = FF*XM + PT(I)
140 CONTINUE
IF (FF.LE.0.) GO TO 150
X = XM
GO TO 130
150 DX = X
C DO NEWTON ITERATION UNTIL X CONVERGES TO TWO
C DECIMAL PLACES
160 IF (ABS(DX/X).LE..005) GO TO 180
FF = PT(1)
DF = FF
DO 170 I=2,N
FF = FF*X + PT(I)
DF = DF*X + FF
170 CONTINUE
FF = FF*X + PT(NN)
DX = FF/DF
X = X - DX
GO TO 160
180 BND = X
C COMPUTE THE DERIVATIVE AS THE INITIAL K POLYNOMIAL
C AND DO 5 STEPS WITH NO SHIFT
NM1 = N - 1
DO 190 I=2,N
K(I) = FLOAT(NN-I)*P(I)/FLOAT(N)
190 CONTINUE
K(1) = P(1)
AA = P(NN)
BB = P(N)
ZEROK = K(N).EQ.0.D0
DO 230 JJ=1,5
CC = K(N)
IF (ZEROK) GO TO 210
C USE SCALED FORM OF RECURRENCE IF VALUE OF K AT 0 IS
C NONZERO
T = -AA/CC
DO 200 I=1,NM1
J = NN - I
K(J) = T*K(J-1) + P(J)
200 CONTINUE
K(1) = P(1)
ZEROK = DABS(K(N)).LE.DABS(BB)*ETA*10.
GO TO 230
C USE UNSCALED FORM OF RECURRENCE
210 DO 220 I=1,NM1
J = NN - I
K(J) = K(J-1)
220 CONTINUE
K(1) = 0.D0
ZEROK = K(N).EQ.0.D0
230 CONTINUE
C SAVE K FOR RESTARTS WITH NEW SHIFTS
DO 240 I=1,N
TEMP(I) = K(I)
240 CONTINUE
C LOOP TO SELECT THE QUADRATIC CORRESPONDING TO EACH
C NEW SHIFT
DO 280 CNT=1,20
C QUADRATIC CORRESPONDS TO A DOUBLE SHIFT TO A
C NON-REAL POINT AND ITS COMPLEX CONJUGATE. THE POINT
C HAS MODULUS BND AND AMPLITUDE ROTATED BY 94 DEGREES
C FROM THE PREVIOUS SHIFT
XXX = COSR*XX - SINR*YY
YY = SINR*XX + COSR*YY
XX = XXX
SR = BND*XX
SI = BND*YY
U = -2.0D0*SR
V = BND
C SECOND STAGE CALCULATION, FIXED QUADRATIC
CALL FXSHFR(20*CNT, NZ)
IF (NZ.EQ.0) GO TO 260
C THE SECOND STAGE JUMPS DIRECTLY TO ONE OF THE THIRD
C STAGE ITERATIONS AND RETURNS HERE IF SUCCESSFUL.
C DEFLATE THE POLYNOMIAL, STORE THE ZERO OR ZEROS AND
C RETURN TO THE MAIN ALGORITHM.
J = DEGREE - N + 1
ZEROR(J) = SZR
ZEROI(J) = SZI
NN = NN - NZ
N = NN - 1
DO 250 I=1,NN
P(I) = QP(I)
250 CONTINUE
IF (NZ.EQ.1) GO TO 40
ZEROR(J+1) = LZR
ZEROI(J+1) = LZI
GO TO 40
C IF THE ITERATION IS UNSUCCESSFUL ANOTHER QUADRATIC
C IS CHOSEN AFTER RESTORING K
260 DO 270 I=1,N
K(I) = TEMP(I)
270 CONTINUE
280 CONTINUE
C RETURN WITH FAILURE IF NO CONVERGENCE WITH 20
C SHIFTS
FAIL = .TRUE.
DEGREE = DEGREE - N
RETURN
END
SUBROUTINE FXSHFR(L2, NZ) FXS 10
C COMPUTES UP TO L2 FIXED SHIFT K-POLYNOMIALS,
C TESTING FOR CONVERGENCE IN THE LINEAR OR QUADRATIC
C CASE. INITIATES ONE OF THE VARIABLE SHIFT
C ITERATIONS AND RETURNS WITH THE NUMBER OF ZEROS
C FOUND.
C L2 - LIMIT OF FIXED SHIFT STEPS
C NZ - NUMBER OF ZEROS FOUND
COMMON /GLOBAL/ P, QP, K, QK, SVK, SR, SI, U,
* V, A, B, C, D, A1, A2, A3, A6, A7, E, F, G,
* H, SZR, SZI, LZR, LZI, ETA, ARE, MRE, N, NN
DOUBLE PRECISION P(101), QP(101), K(101),
* QK(101), SVK(101), SR, SI, U, V, A, B, C, D,
* A1, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
* LZR, LZI
REAL ETA, ARE, MRE
INTEGER N, NN
DOUBLE PRECISION SVU, SVV, UI, VI, S
REAL BETAS, BETAV, OSS, OVV, SS, VV, TS, TV,
* OTS, OTV, TVV, TSS
INTEGER L2, NZ, TYPE, I, J, IFLAG
LOGICAL VPASS, SPASS, VTRY, STRY
NZ = 0
BETAV = .25
BETAS = .25
OSS = SR
OVV = V
C EVALUATE POLYNOMIAL BY SYNTHETIC DIVISION
CALL QUADSD(NN, U, V, P, QP, A, B)
CALL CALCSC(TYPE)
DO 80 J=1,L2
C CALCULATE NEXT K POLYNOMIAL AND ESTIMATE V
CALL NEXTK(TYPE)
CALL CALCSC(TYPE)
CALL NEWEST(TYPE, UI, VI)
VV = VI
C ESTIMATE S
SS = 0.
IF (K(N).NE.0.D0) SS = -P(NN)/K(N)
TV = 1.
TS = 1.
IF (J.EQ.1 .OR. TYPE.EQ.3) GO TO 70
C COMPUTE RELATIVE MEASURES OF CONVERGENCE OF S AND V
C SEQUENCES
IF (VV.NE.0.) TV = ABS((VV-OVV)/VV)
IF (SS.NE.0.) TS = ABS((SS-OSS)/SS)
C IF DECREASING, MULTIPLY TWO MOST RECENT
C CONVERGENCE MEASURES
TVV = 1.
IF (TV.LT.OTV) TVV = TV*OTV
TSS = 1.
IF (TS.LT.OTS) TSS = TS*OTS
C COMPARE WITH CONVERGENCE CRITERIA
VPASS = TVV.LT.BETAV
SPASS = TSS.LT.BETAS
IF (.NOT.(SPASS .OR. VPASS)) GO TO 70
C AT LEAST ONE SEQUENCE HAS PASSED THE CONVERGENCE
C TEST. STORE VARIABLES BEFORE ITERATING
SVU = U
SVV = V
DO 10 I=1,N
SVK(I) = K(I)
10 CONTINUE
S = SS
C CHOOSE ITERATION ACCORDING TO THE FASTEST
C CONVERGING SEQUENCE
VTRY = .FALSE.
STRY = .FALSE.
IF (SPASS .AND. ((.NOT.VPASS) .OR.
* TSS.LT.TVV)) GO TO 40
20 CALL QUADIT(UI, VI, NZ)
IF (NZ.GT.0) RETURN
C QUADRATIC ITERATION HAS FAILED. FLAG THAT IT HAS
C BEEN TRIED AND DECREASE THE CONVERGENCE CRITERION.
VTRY = .TRUE.
BETAV = BETAV*.25
C TRY LINEAR ITERATION IF IT HAS NOT BEEN TRIED AND
C THE S SEQUENCE IS CONVERGING
IF (STRY .OR. (.NOT.SPASS)) GO TO 50
DO 30 I=1,N
K(I) = SVK(I)
30 CONTINUE
40 CALL REALIT(S, NZ, IFLAG)
IF (NZ.GT.0) RETURN
C LINEAR ITERATION HAS FAILED. FLAG THAT IT HAS BEEN
C TRIED AND DECREASE THE CONVERGENCE CRITERION
STRY = .TRUE.
BETAS = BETAS*.25
IF (IFLAG.EQ.0) GO TO 50
C IF LINEAR ITERATION SIGNALS AN ALMOST DOUBLE REAL
C ZERO ATTEMPT QUADRATIC INTERATION
UI = -(S+S)
VI = S*S
GO TO 20
C RESTORE VARIABLES
50 U = SVU
V = SVV
DO 60 I=1,N
K(I) = SVK(I)
60 CONTINUE
C TRY QUADRATIC ITERATION IF IT HAS NOT BEEN TRIED
C AND THE V SEQUENCE IS CONVERGING
IF (VPASS .AND. (.NOT.VTRY)) GO TO 20
C RECOMPUTE QP AND SCALAR VALUES TO CONTINUE THE
C SECOND STAGE
CALL QUADSD(NN, U, V, P, QP, A, B)
CALL CALCSC(TYPE)
70 OVV = VV
OSS = SS
OTV = TV
OTS = TS
80 CONTINUE
RETURN
END
SUBROUTINE QUADIT(UU, VV, NZ) QUA 10
C VARIABLE-SHIFT K-POLYNOMIAL ITERATION FOR A
C QUADRATIC FACTOR CONVERGES ONLY IF THE ZEROS ARE
C EQUIMODULAR OR NEARLY SO.
C UU,VV - COEFFICIENTS OF STARTING QUADRATIC
C NZ - NUMBER OF ZERO FOUND
COMMON /GLOBAL/ P, QP, K, QK, SVK, SR, SI, U,
* V, A, B, C, D, A1, A2, A3, A6, A7, E, F, G,
* H, SZR, SZI, LZR, LZI, ETA, ARE, MRE, N, NN
DOUBLE PRECISION P(101), QP(101), K(101),
* QK(101), SVK(101), SR, SI, U, V, A, B, C, D,
* A1, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
* LZR, LZI
REAL ETA, ARE, MRE
INTEGER N, NN
DOUBLE PRECISION UI, VI, UU, VV, DABS
REAL MS, MP, OMP, EE, RELSTP, T, ZM
INTEGER NZ, TYPE, I, J
LOGICAL TRIED
NZ = 0
TRIED = .FALSE.
U = UU
V = VV
J = 0
C MAIN LOOP
10 CALL QUAD(1.D0, U, V, SZR, SZI, LZR, LZI)
C RETURN IF ROOTS OF THE QUADRATIC ARE REAL AND NOT
C CLOSE TO MULTIPLE OR NEARLY EQUAL AND OF OPPOSITE
C SIGN
IF (DABS(DABS(SZR)-DABS(LZR)).GT..01D0*
* DABS(LZR)) RETURN
C EVALUATE POLYNOMIAL BY QUADRATIC SYNTHETIC DIVISION
CALL QUADSD(NN, U, V, P, QP, A, B)
MP = DABS(A-SZR*B) + DABS(SZI*B)
C COMPUTE A RIGOROUS BOUND ON THE ROUNDING ERROR IN
C EVALUTING P
ZM = SQRT(ABS(SNGL(V)))
EE = 2.*ABS(SNGL(QP(1)))
T = -SZR*B
DO 20 I=2,N
EE = EE*ZM + ABS(SNGL(QP(I)))
20 CONTINUE
EE = EE*ZM + ABS(SNGL(A)+T)
EE = (5.*MRE+4.*ARE)*EE - (5.*MRE+2.*ARE)*
* (ABS(SNGL(A)+T)+ABS(SNGL(B))*ZM) +
* 2.*ARE*ABS(T)
C ITERATION HAS CONVERGED SUFFICIENTLY IF THE
C POLYNOMIAL VALUE IS LESS THAN 20 TIMES THIS BOUND
IF (MP.GT.20.*EE) GO TO 30
NZ = 2
RETURN
30 J = J + 1
C STOP ITERATION AFTER 20 STEPS
IF (J.GT.20) RETURN
IF (J.LT.2) GO TO 50
IF (RELSTP.GT..01 .OR. MP.LT.OMP .OR. TRIED)
* GO TO 50
C A CLUSTER APPEARS TO BE STALLING THE CONVERGENCE.
C FIVE FIXED SHIFT STEPS ARE TAKEN WITH A U,V CLOSE
C TO THE CLUSTER
IF (RELSTP.LT.ETA) RELSTP = ETA
RELSTP = SQRT(RELSTP)
U = U - U*RELSTP
V = V + V*RELSTP
CALL QUADSD(NN, U, V, P, QP, A, B)
DO 40 I=1,5
CALL CALCSC(TYPE)
CALL NEXTK(TYPE)
40 CONTINUE
TRIED = .TRUE.
J = 0
50 OMP = MP
C CALCULATE NEXT K POLYNOMIAL AND NEW U AND V
CALL CALCSC(TYPE)
CALL NEXTK(TYPE)
CALL CALCSC(TYPE)
CALL NEWEST(TYPE, UI, VI)
C IF VI IS ZERO THE ITERATION IS NOT CONVERGING
IF (VI.EQ.0.D0) RETURN
RELSTP = DABS((VI-V)/VI)
U = UI
V = VI
GO TO 10
END
SUBROUTINE REALIT(SSS, NZ, IFLAG) REA 10
C VARIABLE-SHIFT H POLYNOMIAL ITERATION FOR A REAL
C ZERO.
C SSS - STARTING ITERATE
C NZ - NUMBER OF ZERO FOUND
C IFLAG - FLAG TO INDICATE A PAIR OF ZEROS NEAR REAL
C AXIS.
COMMON /GLOBAL/ P, QP, K, QK, SVK, SR, SI, U,
* V, A, B, C, D, A1, A2, A3, A6, A7, E, F, G,
* H, SZR, SZI, LZR, LZI, ETA, ARE, MRE, N, NN
DOUBLE PRECISION P(101), QP(101), K(101),
* QK(101), SVK(101), SR, SI, U, V, A, B, C, D,
* A1, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
* LZR, LZI
REAL ETA, ARE, MRE
INTEGER N, NN
DOUBLE PRECISION PV, KV, T, S, SSS, DABS
REAL MS, MP, OMP, EE
INTEGER NZ, IFLAG, I, J, NM1
NM1 = N - 1
NZ = 0
S = SSS
IFLAG = 0
J = 0
C MAIN LOOP
10 PV = P(1)
C EVALUATE P AT S
QP(1) = PV
DO 20 I=2,NN
PV = PV*S + P(I)
QP(I) = PV
20 CONTINUE
MP = DABS(PV)
C COMPUTE A RIGOROUS BOUND ON THE ERROR IN EVALUATING
C P
MS = DABS(S)
EE = (MRE/(ARE+MRE))*ABS(SNGL(QP(1)))
DO 30 I=2,NN
EE = EE*MS + ABS(SNGL(QP(I)))
30 CONTINUE
C ITERATION HAS CONVERGED SUFFICIENTLY IF THE
C POLYNOMIAL VALUE IS LESS THAN 20 TIMES THIS BOUND
IF (MP.GT.20.*((ARE+MRE)*EE-MRE*MP)) GO TO 40
NZ = 1
SZR = S
SZI = 0.D0
RETURN
40 J = J + 1
C STOP ITERATION AFTER 10 STEPS
IF (J.GT.10) RETURN
IF (J.LT.2) GO TO 50
IF (DABS(T).GT..001*DABS(S-T) .OR. MP.LE.OMP)
* GO TO 50
C A CLUSTER OF ZEROS NEAR THE REAL AXIS HAS BEEN
C ENCOUNTERED RETURN WITH IFLAG SET TO INITIATE A
C QUADRATIC ITERATION
IFLAG = 1
SSS = S
RETURN
C RETURN IF THE POLYNOMIAL VALUE HAS INCREASED
C SIGNIFICANTLY
50 OMP = MP
C COMPUTE T, THE NEXT POLYNOMIAL, AND THE NEW ITERATE
KV = K(1)
QK(1) = KV
DO 60 I=2,N
KV = KV*S + K(I)
QK(I) = KV
60 CONTINUE
IF (DABS(KV).LE.DABS(K(N))*10.*ETA) GO TO 80
C USE THE SCALED FORM OF THE RECURRENCE IF THE VALUE
C OF K AT S IS NONZERO
T = -PV/KV
K(1) = QP(1)
DO 70 I=2,N
K(I) = T*QK(I-1) + QP(I)
70 CONTINUE
GO TO 100
C USE UNSCALED FORM
80 K(1) = 0.0D0
DO 90 I=2,N
K(I) = QK(I-1)
90 CONTINUE
100 KV = K(1)
DO 110 I=2,N
KV = KV*S + K(I)
110 CONTINUE
T = 0.D0
IF (DABS(KV).GT.DABS(K(N))*10.*ETA) T = -PV/KV
S = S + T
GO TO 10
END
SUBROUTINE CALCSC(TYPE) CAL 10
C THIS ROUTINE CALCULATES SCALAR QUANTITIES USED TO
C COMPUTE THE NEXT K POLYNOMIAL AND NEW ESTIMATES OF
C THE QUADRATIC COEFFICIENTS.
C TYPE - INTEGER VARIABLE SET HERE INDICATING HOW THE
C CALCULATIONS ARE NORMALIZED TO AVOID OVERFLOW
COMMON /GLOBAL/ P, QP, K, QK, SVK, SR, SI, U,
* V, A, B, C, D, A1, A2, A3, A6, A7, E, F, G,
* H, SZR, SZI, LZR, LZI, ETA, ARE, MRE, N, NN
DOUBLE PRECISION P(101), QP(101), K(101),
* QK(101), SVK(101), SR, SI, U, V, A, B, C, D,
* A1, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
* LZR, LZI
REAL ETA, ARE, MRE
INTEGER N, NN
DOUBLE PRECISION DABS
INTEGER TYPE
C SYNTHETIC DIVISION OF K BY THE QUADRATIC 1,U,V
CALL QUADSD(N, U, V, K, QK, C, D)
IF (DABS(C).GT.DABS(K(N))*100.*ETA) GO TO 10
IF (DABS(D).GT.DABS(K(N-1))*100.*ETA) GO TO 10
TYPE = 3
C TYPE=3 INDICATES THE QUADRATIC IS ALMOST A FACTOR
C OF K
RETURN
10 IF (DABS(D).LT.DABS(C)) GO TO 20
TYPE = 2
C TYPE=2 INDICATES THAT ALL FORMULAS ARE DIVIDED BY D
E = A/D
F = C/D
G = U*B
H = V*B
A3 = (A+G)*E + H*(B/D)
A1 = B*F - A
A7 = (F+U)*A + H
RETURN
20 TYPE = 1
C TYPE=1 INDICATES THAT ALL FORMULAS ARE DIVIDED BY C
E = A/C
F = D/C
G = U*E
H = V*B
A3 = A*E + (H/C+G)*B
A1 = B - A*(D/C)
A7 = A + G*D + H*F
RETURN
END
SUBROUTINE NEXTK(TYPE) NEX 10
C COMPUTES THE NEXT K POLYNOMIALS USING SCALARS
C COMPUTED IN CALCSC
COMMON /GLOBAL/ P, QP, K, QK, SVK, SR, SI, U,
* V, A, B, C, D, A1, A2, A3, A6, A7, E, F, G,
* H, SZR, SZI, LZR, LZI, ETA, ARE, MRE, N, NN
DOUBLE PRECISION P(101), QP(101), K(101),
* QK(101), SVK(101), SR, SI, U, V, A, B, C, D,
* A1, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
* LZR, LZI
REAL ETA, ARE, MRE
INTEGER N, NN
DOUBLE PRECISION TEMP, DABS
INTEGER TYPE
IF (TYPE.EQ.3) GO TO 40
TEMP = A
IF (TYPE.EQ.1) TEMP = B
IF (DABS(A1).GT.DABS(TEMP)*ETA*10.) GO TO 20
C IF A1 IS NEARLY ZERO THEN USE A SPECIAL FORM OF THE
C RECURRENCE
K(1) = 0.D0
K(2) = -A7*QP(1)
DO 10 I=3,N
K(I) = A3*QK(I-2) - A7*QP(I-1)
10 CONTINUE
RETURN
C USE SCALED FORM OF THE RECURRENCE
20 A7 = A7/A1
A3 = A3/A1
K(1) = QP(1)
K(2) = QP(2) - A7*QP(1)
DO 30 I=3,N
K(I) = A3*QK(I-2) - A7*QP(I-1) + QP(I)
30 CONTINUE
RETURN
C USE UNSCALED FORM OF THE RECURRENCE IF TYPE IS 3
40 K(1) = 0.D0
K(2) = 0.D0
DO 50 I=3,N
K(I) = QK(I-2)
50 CONTINUE
RETURN
END
SUBROUTINE NEWEST(TYPE, UU, VV) NEW 10
C COMPUTE NEW ESTIMATES OF THE QUADRATIC COEFFICIENTS
C USING THE SCALARS COMPUTED IN CALCSC.
COMMON /GLOBAL/ P, QP, K, QK, SVK, SR, SI, U,
* V, A, B, C, D, A1, A2, A3, A6, A7, E, F, G,
* H, SZR, SZI, LZR, LZI, ETA, ARE, MRE, N, NN
DOUBLE PRECISION P(101), QP(101), K(101),
* QK(101), SVK(101), SR, SI, U, V, A, B, C, D,
* A1, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
* LZR, LZI
REAL ETA, ARE, MRE
INTEGER N, NN
DOUBLE PRECISION A4, A5, B1, B2, C1, C2, C3,
* C4, TEMP, UU, VV
INTEGER TYPE
C USE FORMULAS APPROPRIATE TO SETTING OF TYPE.
IF (TYPE.EQ.3) GO TO 30
IF (TYPE.EQ.2) GO TO 10
A4 = A + U*B + H*F
A5 = C + (U+V*F)*D
GO TO 20
10 A4 = (A+G)*F + H
A5 = (F+U)*C + V*D
C EVALUATE NEW QUADRATIC COEFFICIENTS.
20 B1 = -K(N)/P(NN)
B2 = -(K(N-1)+B1*P(N))/P(NN)
C1 = V*B2*A1
C2 = B1*A7
C3 = B1*B1*A3
C4 = C1 - C2 - C3
TEMP = A5 + B1*A4 - C4
IF (TEMP.EQ.0.D0) GO TO 30
UU = U - (U*(C3+C2)+V*(B1*A1+B2*A7))/TEMP
VV = V*(1.+C4/TEMP)
RETURN
C IF TYPE=3 THE QUADRATIC IS ZEROED
30 UU = 0.D0
VV = 0.D0
RETURN
END
SUBROUTINE QUADSD(NN, U, V, P, Q, A, B) QUA 10
C DIVIDES P BY THE QUADRATIC 1,U,V PLACING THE
C QUOTIENT IN Q AND THE REMAINDER IN A,B
DOUBLE PRECISION P(NN), Q(NN), U, V, A, B, C
INTEGER I
B = P(1)
Q(1) = B
A = P(2) - U*B
Q(2) = A
DO 10 I=3,NN
C = P(I) - U*A - V*B
Q(I) = C
B = A
A = C
10 CONTINUE
RETURN
END
SUBROUTINE QUAD(A, B1, C, SR, SI, LR, LI) QUA 10
C CALCULATE THE ZEROS OF THE QUADRATIC A*Z**2+B1*Z+C.
C THE QUADRATIC FORMULA, MODIFIED TO AVOID
C OVERFLOW, IS USED TO FIND THE LARGER ZERO IF THE
C ZEROS ARE REAL AND BOTH ZEROS ARE COMPLEX.
C THE SMALLER REAL ZERO IS FOUND DIRECTLY FROM THE
C PRODUCT OF THE ZEROS C/A.
DOUBLE PRECISION A, B1, C, SR, SI, LR, LI, B,
* D, E, DABS, DSQRT
IF (A.NE.0.D0) GO TO 20
SR = 0.D0
IF (B1.NE.0.D0) SR = -C/B1
LR = 0.D0
10 SI = 0.D0
LI = 0.D0
RETURN
20 IF (C.NE.0.D0) GO TO 30
SR = 0.D0
LR = -B1/A
GO TO 10
C COMPUTE DISCRIMINANT AVOIDING OVERFLOW
30 B = B1/2.D0
IF (DABS(B).LT.DABS(C)) GO TO 40
E = 1.D0 - (A/B)*(C/B)
D = DSQRT(DABS(E))*DABS(B)
GO TO 50
40 E = A
IF (C.LT.0.D0) E = -A
E = B*(B/DABS(C)) - E
D = DSQRT(DABS(E))*DSQRT(DABS(C))
50 IF (E.LT.0.D0) GO TO 60
C REAL ZEROS
IF (B.GE.0.D0) D = -D
LR = (-B+D)/A
SR = 0.D0
IF (LR.NE.0.D0) SR = (C/LR)/A
GO TO 10
C COMPLEX CONJUGATE ZEROS
60 SR = -B/A
LR = SR
SI = DABS(D/A)
LI = -SI
RETURN
END
|