File: rpoly.f

package info (click to toggle)
insighttoolkit 3.6.0-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 94,956 kB
  • ctags: 74,981
  • sloc: cpp: 355,621; ansic: 195,070; fortran: 28,713; python: 3,802; tcl: 1,996; sh: 1,175; java: 583; makefile: 415; csh: 184; perl: 175
file content (721 lines) | stat: -rw-r--r-- 21,637 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
      SUBROUTINE RPOLY(OP, DEGREE, ZEROR, ZEROI,                        RPO   10
     * FAIL)
C FINDS THE ZEROS OF A REAL POLYNOMIAL
C OP  - DOUBLE PRECISION VECTOR OF COEFFICIENTS IN
C       ORDER OF DECREASING POWERS.
C DEGREE   - INTEGER DEGREE OF POLYNOMIAL.
C ZEROR, ZEROI - OUTPUT DOUBLE PRECISION VECTORS OF
C                REAL AND IMAGINARY PARTS OF THE
C                ZEROS.
C FAIL  - OUTPUT LOGICAL PARAMETER, TRUE ONLY IF
C         LEADING COEFFICIENT IS ZERO OR IF RPOLY
C         HAS FOUND FEWER THAN DEGREE ZEROS.
C         IN THE LATTER CASE DEGREE IS RESET TO
C         THE NUMBER OF ZEROS FOUND.
C TO CHANGE THE SIZE OF POLYNOMIALS WHICH CAN BE
C SOLVED, RESET THE DIMENSIONS OF THE ARRAYS IN THE
C COMMON AREA AND IN THE FOLLOWING DECLARATIONS.
C THE SUBROUTINE USES SINGLE PRECISION CALCULATIONS
C FOR SCALING, BOUNDS AND ERROR CALCULATIONS. ALL
C CALCULATIONS FOR THE ITERATIONS ARE DONE IN DOUBLE
C PRECISION.
      COMMON /GLOBAL/ P, QP, K, QK, SVK, SR, SI, U,
     * V, A, B, C, D, A1, A2, A3, A6, A7, E, F, G,
     * H, SZR, SZI, LZR, LZI, ETA, ARE, MRE, N, NN
      DOUBLE PRECISION P(101), QP(101), K(101),
     * QK(101), SVK(101), SR, SI, U, V, A, B, C, D,
     * A1, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
     * LZR, LZI
      REAL ETA, ARE, MRE
      INTEGER N, NN
      DOUBLE PRECISION OP(101), TEMP(101),
     * ZEROR(100), ZEROI(100), T, AA, BB, CC, DABS,
     * FACTOR
      REAL PT(101), LO, MAX, MIN, XX, YY, COSR,
     * SINR, XXX, X, SC, BND, XM, FF, DF, DX, INFIN,
     * SMALNO, BASE
      INTEGER DEGREE, CNT, NZ, I, J, JJ, NM1
      LOGICAL FAIL, ZEROK
C THE FOLLOWING STATEMENTS SET MACHINE CONSTANTS USED
C IN VARIOUS PARTS OF THE PROGRAM. THE MEANING OF THE
C FOUR CONSTANTS ARE...
C ETA     THE MAXIMUM RELATIVE REPRESENTATION ERROR
C         WHICH CAN BE DESCRIBED AS THE SMALLEST
C         POSITIVE FLOATING POINT NUMBER SUCH THAT
C         1.D0+ETA IS GREATER THAN 1.
C INFINY  THE LARGEST FLOATING-POINT NUMBER.
C SMALNO  THE SMALLEST POSITIVE FLOATING-POINT NUMBER
C         IF THE EXPONENT RANGE DIFFERS IN SINGLE AND
C         DOUBLE PRECISION THEN SMALNO AND INFIN
C         SHOULD INDICATE THE SMALLER RANGE.
C BASE    THE BASE OF THE FLOATING-POINT NUMBER
C         SYSTEM USED.
C THE VALUES BELOW CORRESPOND TO THE BURROUGHS B6700
      BASE = 8.
      ETA = .5*BASE**(1-26)
      INFIN = 4.3E68
      SMALNO = 1.0E-45
C ARE AND MRE REFER TO THE UNIT ERROR IN + AND *
C RESPECTIVELY. THEY ARE ASSUMED TO BE THE SAME AS
C ETA.
      ARE = ETA
      MRE = ETA
      LO = SMALNO/ETA
C INITIALIZATION OF CONSTANTS FOR SHIFT ROTATION
      XX = .70710678
      YY = -XX
      COSR = -.069756474
      SINR = .99756405
      FAIL = .FALSE.
      N = DEGREE
      NN = N + 1
C ALGORITHM FAILS IF THE LEADING COEFFICIENT IS ZERO.
      IF (OP(1).NE.0.D0) GO TO 10
      FAIL = .TRUE.
      DEGREE = 0
      RETURN
C REMOVE THE ZEROS AT THE ORIGIN IF ANY
   10 IF (OP(NN).NE.0.0D0) GO TO 20
      J = DEGREE - N + 1
      ZEROR(J) = 0.D0
      ZEROI(J) = 0.D0
      NN = NN - 1
      N = N - 1
      GO TO 10
C MAKE A COPY OF THE COEFFICIENTS
   20 DO 30 I=1,NN
        P(I) = OP(I)
   30 CONTINUE
C START THE ALGORITHM FOR ONE ZERO
   40 IF (N.GT.2) GO TO 60
      IF (N.LT.1) RETURN
C CALCULATE THE FINAL ZERO OR PAIR OF ZEROS
      IF (N.EQ.2) GO TO 50
      ZEROR(DEGREE) = -P(2)/P(1)
      ZEROI(DEGREE) = 0.0D0
      RETURN
   50 CALL QUAD(P(1), P(2), P(3), ZEROR(DEGREE-1),
     * ZEROI(DEGREE-1), ZEROR(DEGREE), ZEROI(DEGREE))
      RETURN
C FIND LARGEST AND SMALLEST MODULI OF COEFFICIENTS.
   60 MAX = 0.
      MIN = INFIN
      DO 70 I=1,NN
        X = ABS(SNGL(P(I)))
        IF (X.GT.MAX) MAX = X
        IF (X.NE.0. .AND. X.LT.MIN) MIN = X
   70 CONTINUE
C SCALE IF THERE ARE LARGE OR VERY SMALL COEFFICIENTS
C COMPUTES A SCALE FACTOR TO MULTIPLY THE
C COEFFICIENTS OF THE POLYNOMIAL. THE SCALING IS DONE
C TO AVOID OVERFLOW AND TO AVOID UNDETECTED UNDERFLOW
C INTERFERING WITH THE CONVERGENCE CRITERION.
C THE FACTOR IS A POWER OF THE BASE
      SC = LO/MIN
      IF (SC.GT.1.0) GO TO 80
      IF (MAX.LT.10.) GO TO 110
      IF (SC.EQ.0.) SC = SMALNO
      GO TO 90
   80 IF (INFIN/SC.LT.MAX) GO TO 110
   90 L = ALOG(SC)/ALOG(BASE) + .5
      FACTOR = (BASE*1.0D0)**L
      IF (FACTOR.EQ.1.D0) GO TO 110
      DO 100 I=1,NN
        P(I) = FACTOR*P(I)
  100 CONTINUE
C COMPUTE LOWER BOUND ON MODULI OF ZEROS.
  110 DO 120 I=1,NN
        PT(I) = ABS(SNGL(P(I)))
  120 CONTINUE
      PT(NN) = -PT(NN)
C COMPUTE UPPER ESTIMATE OF BOUND
      X = EXP((ALOG(-PT(NN))-ALOG(PT(1)))/FLOAT(N))
      IF (PT(N).EQ.0.) GO TO 130
C IF NEWTON STEP AT THE ORIGIN IS BETTER, USE IT.
      XM = -PT(NN)/PT(N)
      IF (XM.LT.X) X = XM
C CHOP THE INTERVAL (0,X) UNTIL FF .LE. 0
  130 XM = X*.1
      FF = PT(1)
      DO 140 I=2,NN
        FF = FF*XM + PT(I)
  140 CONTINUE
      IF (FF.LE.0.) GO TO 150
      X = XM
      GO TO 130
  150 DX = X
C DO NEWTON ITERATION UNTIL X CONVERGES TO TWO
C DECIMAL PLACES
  160 IF (ABS(DX/X).LE..005) GO TO 180
      FF = PT(1)
      DF = FF
      DO 170 I=2,N
        FF = FF*X + PT(I)
        DF = DF*X + FF
  170 CONTINUE
      FF = FF*X + PT(NN)
      DX = FF/DF
      X = X - DX
      GO TO 160
  180 BND = X
C COMPUTE THE DERIVATIVE AS THE INITIAL K POLYNOMIAL
C AND DO 5 STEPS WITH NO SHIFT
      NM1 = N - 1
      DO 190 I=2,N
        K(I) = FLOAT(NN-I)*P(I)/FLOAT(N)
  190 CONTINUE
      K(1) = P(1)
      AA = P(NN)
      BB = P(N)
      ZEROK = K(N).EQ.0.D0
      DO 230 JJ=1,5
        CC = K(N)
        IF (ZEROK) GO TO 210
C USE SCALED FORM OF RECURRENCE IF VALUE OF K AT 0 IS
C NONZERO
        T = -AA/CC
        DO 200 I=1,NM1
          J = NN - I
          K(J) = T*K(J-1) + P(J)
  200   CONTINUE
        K(1) = P(1)
        ZEROK = DABS(K(N)).LE.DABS(BB)*ETA*10.
        GO TO 230
C USE UNSCALED FORM OF RECURRENCE
  210   DO 220 I=1,NM1
          J = NN - I
          K(J) = K(J-1)
  220   CONTINUE
        K(1) = 0.D0
        ZEROK = K(N).EQ.0.D0
  230 CONTINUE
C SAVE K FOR RESTARTS WITH NEW SHIFTS
      DO 240 I=1,N
        TEMP(I) = K(I)
  240 CONTINUE
C LOOP TO SELECT THE QUADRATIC  CORRESPONDING TO EACH
C NEW SHIFT
      DO 280 CNT=1,20
C QUADRATIC CORRESPONDS TO A DOUBLE SHIFT TO A
C NON-REAL POINT AND ITS COMPLEX CONJUGATE. THE POINT
C HAS MODULUS BND AND AMPLITUDE ROTATED BY 94 DEGREES
C FROM THE PREVIOUS SHIFT
        XXX = COSR*XX - SINR*YY
        YY = SINR*XX + COSR*YY
        XX = XXX
        SR = BND*XX
        SI = BND*YY
        U = -2.0D0*SR
        V = BND
C SECOND STAGE CALCULATION, FIXED QUADRATIC
        CALL FXSHFR(20*CNT, NZ)
        IF (NZ.EQ.0) GO TO 260
C THE SECOND STAGE JUMPS DIRECTLY TO ONE OF THE THIRD
C STAGE ITERATIONS AND RETURNS HERE IF SUCCESSFUL.
C DEFLATE THE POLYNOMIAL, STORE THE ZERO OR ZEROS AND
C RETURN TO THE MAIN ALGORITHM.
        J = DEGREE - N + 1
        ZEROR(J) = SZR
        ZEROI(J) = SZI
        NN = NN - NZ
        N = NN - 1
        DO 250 I=1,NN
          P(I) = QP(I)
  250   CONTINUE
        IF (NZ.EQ.1) GO TO 40
        ZEROR(J+1) = LZR
        ZEROI(J+1) = LZI
        GO TO 40
C IF THE ITERATION IS UNSUCCESSFUL ANOTHER QUADRATIC
C IS CHOSEN AFTER RESTORING K
  260   DO 270 I=1,N
          K(I) = TEMP(I)
  270   CONTINUE
  280 CONTINUE
C RETURN WITH FAILURE IF NO CONVERGENCE WITH 20
C SHIFTS
      FAIL = .TRUE.
      DEGREE = DEGREE - N
      RETURN
      END
      SUBROUTINE FXSHFR(L2, NZ)                                         FXS   10
C COMPUTES UP TO  L2  FIXED SHIFT K-POLYNOMIALS,
C TESTING FOR CONVERGENCE IN THE LINEAR OR QUADRATIC
C CASE. INITIATES ONE OF THE VARIABLE SHIFT
C ITERATIONS AND RETURNS WITH THE NUMBER OF ZEROS
C FOUND.
C L2 - LIMIT OF FIXED SHIFT STEPS
C NZ - NUMBER OF ZEROS FOUND
      COMMON /GLOBAL/ P, QP, K, QK, SVK, SR, SI, U,
     * V, A, B, C, D, A1, A2, A3, A6, A7, E, F, G,
     * H, SZR, SZI, LZR, LZI, ETA, ARE, MRE, N, NN
      DOUBLE PRECISION P(101), QP(101), K(101),
     * QK(101), SVK(101), SR, SI, U, V, A, B, C, D,
     * A1, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
     * LZR, LZI
      REAL ETA, ARE, MRE
      INTEGER N, NN
      DOUBLE PRECISION SVU, SVV, UI, VI, S
      REAL BETAS, BETAV, OSS, OVV, SS, VV, TS, TV,
     * OTS, OTV, TVV, TSS
      INTEGER L2, NZ, TYPE, I, J, IFLAG
      LOGICAL VPASS, SPASS, VTRY, STRY
      NZ = 0
      BETAV = .25
      BETAS = .25
      OSS = SR
      OVV = V
C EVALUATE POLYNOMIAL BY SYNTHETIC DIVISION
      CALL QUADSD(NN, U, V, P, QP, A, B)
      CALL CALCSC(TYPE)
      DO 80 J=1,L2
C CALCULATE NEXT K POLYNOMIAL AND ESTIMATE V
        CALL NEXTK(TYPE)
        CALL CALCSC(TYPE)
        CALL NEWEST(TYPE, UI, VI)
        VV = VI
C ESTIMATE S
        SS = 0.
        IF (K(N).NE.0.D0) SS = -P(NN)/K(N)
        TV = 1.
        TS = 1.
        IF (J.EQ.1 .OR. TYPE.EQ.3) GO TO 70
C COMPUTE RELATIVE MEASURES OF CONVERGENCE OF S AND V
C SEQUENCES
        IF (VV.NE.0.) TV = ABS((VV-OVV)/VV)
        IF (SS.NE.0.) TS = ABS((SS-OSS)/SS)
C IF DECREASING, MULTIPLY TWO MOST RECENT
C CONVERGENCE MEASURES
        TVV = 1.
        IF (TV.LT.OTV) TVV = TV*OTV
        TSS = 1.
        IF (TS.LT.OTS) TSS = TS*OTS
C COMPARE WITH CONVERGENCE CRITERIA
        VPASS = TVV.LT.BETAV
        SPASS = TSS.LT.BETAS
        IF (.NOT.(SPASS .OR. VPASS)) GO TO 70
C AT LEAST ONE SEQUENCE HAS PASSED THE CONVERGENCE
C TEST. STORE VARIABLES BEFORE ITERATING
        SVU = U
        SVV = V
        DO 10 I=1,N
          SVK(I) = K(I)
   10   CONTINUE
        S = SS
C CHOOSE ITERATION ACCORDING TO THE FASTEST
C CONVERGING SEQUENCE
        VTRY = .FALSE.
        STRY = .FALSE.
        IF (SPASS .AND. ((.NOT.VPASS) .OR.
     *   TSS.LT.TVV)) GO TO 40
   20   CALL QUADIT(UI, VI, NZ)
        IF (NZ.GT.0) RETURN
C QUADRATIC ITERATION HAS FAILED. FLAG THAT IT HAS
C BEEN TRIED AND DECREASE THE CONVERGENCE CRITERION.
        VTRY = .TRUE.
        BETAV = BETAV*.25
C TRY LINEAR ITERATION IF IT HAS NOT BEEN TRIED AND
C THE S SEQUENCE IS CONVERGING
        IF (STRY .OR. (.NOT.SPASS)) GO TO 50
        DO 30 I=1,N
          K(I) = SVK(I)
   30   CONTINUE
   40   CALL REALIT(S, NZ, IFLAG)
        IF (NZ.GT.0) RETURN
C LINEAR ITERATION HAS FAILED. FLAG THAT IT HAS BEEN
C TRIED AND DECREASE THE CONVERGENCE CRITERION
        STRY = .TRUE.
        BETAS = BETAS*.25
        IF (IFLAG.EQ.0) GO TO 50
C IF LINEAR ITERATION SIGNALS AN ALMOST DOUBLE REAL
C ZERO ATTEMPT QUADRATIC INTERATION
        UI = -(S+S)
        VI = S*S
        GO TO 20
C RESTORE VARIABLES
   50   U = SVU
        V = SVV
        DO 60 I=1,N
          K(I) = SVK(I)
   60   CONTINUE
C TRY QUADRATIC ITERATION IF IT HAS NOT BEEN TRIED
C AND THE V SEQUENCE IS CONVERGING
        IF (VPASS .AND. (.NOT.VTRY)) GO TO 20
C RECOMPUTE QP AND SCALAR VALUES TO CONTINUE THE
C SECOND STAGE
        CALL QUADSD(NN, U, V, P, QP, A, B)
        CALL CALCSC(TYPE)
   70   OVV = VV
        OSS = SS
        OTV = TV
        OTS = TS
   80 CONTINUE
      RETURN
      END
      SUBROUTINE QUADIT(UU, VV, NZ)                                     QUA   10
C VARIABLE-SHIFT K-POLYNOMIAL ITERATION FOR A
C QUADRATIC FACTOR CONVERGES ONLY IF THE ZEROS ARE
C EQUIMODULAR OR NEARLY SO.
C UU,VV - COEFFICIENTS OF STARTING QUADRATIC
C NZ - NUMBER OF ZERO FOUND
      COMMON /GLOBAL/ P, QP, K, QK, SVK, SR, SI, U,
     * V, A, B, C, D, A1, A2, A3, A6, A7, E, F, G,
     * H, SZR, SZI, LZR, LZI, ETA, ARE, MRE, N, NN
      DOUBLE PRECISION P(101), QP(101), K(101),
     * QK(101), SVK(101), SR, SI, U, V, A, B, C, D,
     * A1, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
     * LZR, LZI
      REAL ETA, ARE, MRE
      INTEGER N, NN
      DOUBLE PRECISION UI, VI, UU, VV, DABS
      REAL MS, MP, OMP, EE, RELSTP, T, ZM
      INTEGER NZ, TYPE, I, J
      LOGICAL TRIED
      NZ = 0
      TRIED = .FALSE.
      U = UU
      V = VV
      J = 0
C MAIN LOOP
   10 CALL QUAD(1.D0, U, V, SZR, SZI, LZR, LZI)
C RETURN IF ROOTS OF THE QUADRATIC ARE REAL AND NOT
C CLOSE TO MULTIPLE OR NEARLY EQUAL AND  OF OPPOSITE
C SIGN
      IF (DABS(DABS(SZR)-DABS(LZR)).GT..01D0*
     * DABS(LZR)) RETURN
C EVALUATE POLYNOMIAL BY QUADRATIC SYNTHETIC DIVISION
      CALL QUADSD(NN, U, V, P, QP, A, B)
      MP = DABS(A-SZR*B) + DABS(SZI*B)
C COMPUTE A RIGOROUS  BOUND ON THE ROUNDING ERROR IN
C EVALUTING P
      ZM = SQRT(ABS(SNGL(V)))
      EE = 2.*ABS(SNGL(QP(1)))
      T = -SZR*B
      DO 20 I=2,N
        EE = EE*ZM + ABS(SNGL(QP(I)))
   20 CONTINUE
      EE = EE*ZM + ABS(SNGL(A)+T)
      EE = (5.*MRE+4.*ARE)*EE - (5.*MRE+2.*ARE)*
     * (ABS(SNGL(A)+T)+ABS(SNGL(B))*ZM) +
     * 2.*ARE*ABS(T)
C ITERATION HAS CONVERGED SUFFICIENTLY IF THE
C POLYNOMIAL VALUE IS LESS THAN 20 TIMES THIS BOUND
      IF (MP.GT.20.*EE) GO TO 30
      NZ = 2
      RETURN
   30 J = J + 1
C STOP ITERATION AFTER 20 STEPS
      IF (J.GT.20) RETURN
      IF (J.LT.2) GO TO 50
      IF (RELSTP.GT..01 .OR. MP.LT.OMP .OR. TRIED)
     * GO TO 50
C A CLUSTER APPEARS TO BE STALLING THE CONVERGENCE.
C FIVE FIXED SHIFT STEPS ARE TAKEN WITH A U,V CLOSE
C TO THE CLUSTER
      IF (RELSTP.LT.ETA) RELSTP = ETA
      RELSTP = SQRT(RELSTP)
      U = U - U*RELSTP
      V = V + V*RELSTP
      CALL QUADSD(NN, U, V, P, QP, A, B)
      DO 40 I=1,5
        CALL CALCSC(TYPE)
        CALL NEXTK(TYPE)
   40 CONTINUE
      TRIED = .TRUE.
      J = 0
   50 OMP = MP
C CALCULATE NEXT K POLYNOMIAL AND NEW U AND V
      CALL CALCSC(TYPE)
      CALL NEXTK(TYPE)
      CALL CALCSC(TYPE)
      CALL NEWEST(TYPE, UI, VI)
C IF VI IS ZERO THE ITERATION IS NOT CONVERGING
      IF (VI.EQ.0.D0) RETURN
      RELSTP = DABS((VI-V)/VI)
      U = UI
      V = VI
      GO TO 10
      END
      SUBROUTINE REALIT(SSS, NZ, IFLAG)                                 REA   10
C VARIABLE-SHIFT H POLYNOMIAL ITERATION FOR A REAL
C ZERO.
C SSS   - STARTING ITERATE
C NZ    - NUMBER OF ZERO FOUND
C IFLAG - FLAG TO INDICATE A PAIR OF ZEROS NEAR REAL
C         AXIS.
      COMMON /GLOBAL/ P, QP, K, QK, SVK, SR, SI, U,
     * V, A, B, C, D, A1, A2, A3, A6, A7, E, F, G,
     * H, SZR, SZI, LZR, LZI, ETA, ARE, MRE, N, NN
      DOUBLE PRECISION P(101), QP(101), K(101),
     * QK(101), SVK(101), SR, SI, U, V, A, B, C, D,
     * A1, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
     * LZR, LZI
      REAL ETA, ARE, MRE
      INTEGER N, NN
      DOUBLE PRECISION PV, KV, T, S, SSS, DABS
      REAL MS, MP, OMP, EE
      INTEGER NZ, IFLAG, I, J, NM1
      NM1 = N - 1
      NZ = 0
      S = SSS
      IFLAG = 0
      J = 0
C MAIN LOOP
   10 PV = P(1)
C EVALUATE P AT S
      QP(1) = PV
      DO 20 I=2,NN
        PV = PV*S + P(I)
        QP(I) = PV
   20 CONTINUE
      MP = DABS(PV)
C COMPUTE A RIGOROUS BOUND ON THE ERROR IN EVALUATING
C P
      MS = DABS(S)
      EE = (MRE/(ARE+MRE))*ABS(SNGL(QP(1)))
      DO 30 I=2,NN
        EE = EE*MS + ABS(SNGL(QP(I)))
   30 CONTINUE
C ITERATION HAS CONVERGED SUFFICIENTLY IF THE
C POLYNOMIAL VALUE IS LESS THAN 20 TIMES THIS BOUND
      IF (MP.GT.20.*((ARE+MRE)*EE-MRE*MP)) GO TO 40
      NZ = 1
      SZR = S
      SZI = 0.D0
      RETURN
   40 J = J + 1
C STOP ITERATION AFTER 10 STEPS
      IF (J.GT.10) RETURN
      IF (J.LT.2) GO TO 50
      IF (DABS(T).GT..001*DABS(S-T) .OR. MP.LE.OMP)
     * GO TO 50
C A CLUSTER OF ZEROS NEAR THE REAL AXIS HAS BEEN
C ENCOUNTERED RETURN WITH IFLAG SET TO INITIATE A
C QUADRATIC ITERATION
      IFLAG = 1
      SSS = S
      RETURN
C RETURN IF THE POLYNOMIAL VALUE HAS INCREASED
C SIGNIFICANTLY
   50 OMP = MP
C COMPUTE T, THE NEXT POLYNOMIAL, AND THE NEW ITERATE
      KV = K(1)
      QK(1) = KV
      DO 60 I=2,N
        KV = KV*S + K(I)
        QK(I) = KV
   60 CONTINUE
      IF (DABS(KV).LE.DABS(K(N))*10.*ETA) GO TO 80
C USE THE SCALED FORM OF THE RECURRENCE IF THE VALUE
C OF K AT S IS NONZERO
      T = -PV/KV
      K(1) = QP(1)
      DO 70 I=2,N
        K(I) = T*QK(I-1) + QP(I)
   70 CONTINUE
      GO TO 100
C USE UNSCALED FORM
   80 K(1) = 0.0D0
      DO 90 I=2,N
        K(I) = QK(I-1)
   90 CONTINUE
  100 KV = K(1)
      DO 110 I=2,N
        KV = KV*S + K(I)
  110 CONTINUE
      T = 0.D0
      IF (DABS(KV).GT.DABS(K(N))*10.*ETA) T = -PV/KV
      S = S + T
      GO TO 10
      END
      SUBROUTINE CALCSC(TYPE)                                           CAL   10
C THIS ROUTINE CALCULATES SCALAR QUANTITIES USED TO
C COMPUTE THE NEXT K POLYNOMIAL AND NEW ESTIMATES OF
C THE QUADRATIC COEFFICIENTS.
C TYPE - INTEGER VARIABLE SET HERE INDICATING HOW THE
C CALCULATIONS ARE NORMALIZED TO AVOID OVERFLOW
      COMMON /GLOBAL/ P, QP, K, QK, SVK, SR, SI, U,
     * V, A, B, C, D, A1, A2, A3, A6, A7, E, F, G,
     * H, SZR, SZI, LZR, LZI, ETA, ARE, MRE, N, NN
      DOUBLE PRECISION P(101), QP(101), K(101),
     * QK(101), SVK(101), SR, SI, U, V, A, B, C, D,
     * A1, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
     * LZR, LZI
      REAL ETA, ARE, MRE
      INTEGER N, NN
      DOUBLE PRECISION DABS
      INTEGER TYPE
C SYNTHETIC DIVISION OF K BY THE QUADRATIC 1,U,V
      CALL QUADSD(N, U, V, K, QK, C, D)
      IF (DABS(C).GT.DABS(K(N))*100.*ETA) GO TO 10
      IF (DABS(D).GT.DABS(K(N-1))*100.*ETA) GO TO 10
      TYPE = 3
C TYPE=3 INDICATES THE QUADRATIC IS ALMOST A FACTOR
C OF K
      RETURN
   10 IF (DABS(D).LT.DABS(C)) GO TO 20
      TYPE = 2
C TYPE=2 INDICATES THAT ALL FORMULAS ARE DIVIDED BY D
      E = A/D
      F = C/D
      G = U*B
      H = V*B
      A3 = (A+G)*E + H*(B/D)
      A1 = B*F - A
      A7 = (F+U)*A + H
      RETURN
   20 TYPE = 1
C TYPE=1 INDICATES THAT ALL FORMULAS ARE DIVIDED BY C
      E = A/C
      F = D/C
      G = U*E
      H = V*B
      A3 = A*E + (H/C+G)*B
      A1 = B - A*(D/C)
      A7 = A + G*D + H*F
      RETURN
      END
      SUBROUTINE NEXTK(TYPE)                                            NEX   10
C COMPUTES THE NEXT K POLYNOMIALS USING SCALARS
C COMPUTED IN CALCSC
      COMMON /GLOBAL/ P, QP, K, QK, SVK, SR, SI, U,
     * V, A, B, C, D, A1, A2, A3, A6, A7, E, F, G,
     * H, SZR, SZI, LZR, LZI, ETA, ARE, MRE, N, NN
      DOUBLE PRECISION P(101), QP(101), K(101),
     * QK(101), SVK(101), SR, SI, U, V, A, B, C, D,
     * A1, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
     * LZR, LZI
      REAL ETA, ARE, MRE
      INTEGER N, NN
      DOUBLE PRECISION TEMP, DABS
      INTEGER TYPE
      IF (TYPE.EQ.3) GO TO 40
      TEMP = A
      IF (TYPE.EQ.1) TEMP = B
      IF (DABS(A1).GT.DABS(TEMP)*ETA*10.) GO TO 20
C IF A1 IS NEARLY ZERO THEN USE A SPECIAL FORM OF THE
C RECURRENCE
      K(1) = 0.D0
      K(2) = -A7*QP(1)
      DO 10 I=3,N
        K(I) = A3*QK(I-2) - A7*QP(I-1)
   10 CONTINUE
      RETURN
C USE SCALED FORM OF THE RECURRENCE
   20 A7 = A7/A1
      A3 = A3/A1
      K(1) = QP(1)
      K(2) = QP(2) - A7*QP(1)
      DO 30 I=3,N
        K(I) = A3*QK(I-2) - A7*QP(I-1) + QP(I)
   30 CONTINUE
      RETURN
C USE UNSCALED FORM OF THE RECURRENCE IF TYPE IS 3
   40 K(1) = 0.D0
      K(2) = 0.D0
      DO 50 I=3,N
        K(I) = QK(I-2)
   50 CONTINUE
      RETURN
      END
      SUBROUTINE NEWEST(TYPE, UU, VV)                                   NEW   10
C COMPUTE NEW ESTIMATES OF THE QUADRATIC COEFFICIENTS
C USING THE SCALARS COMPUTED IN CALCSC.
      COMMON /GLOBAL/ P, QP, K, QK, SVK, SR, SI, U,
     * V, A, B, C, D, A1, A2, A3, A6, A7, E, F, G,
     * H, SZR, SZI, LZR, LZI, ETA, ARE, MRE, N, NN
      DOUBLE PRECISION P(101), QP(101), K(101),
     * QK(101), SVK(101), SR, SI, U, V, A, B, C, D,
     * A1, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
     * LZR, LZI
      REAL ETA, ARE, MRE
      INTEGER N, NN
      DOUBLE PRECISION A4, A5, B1, B2, C1, C2, C3,
     * C4, TEMP, UU, VV
      INTEGER TYPE
C USE FORMULAS APPROPRIATE TO SETTING OF TYPE.
      IF (TYPE.EQ.3) GO TO 30
      IF (TYPE.EQ.2) GO TO 10
      A4 = A + U*B + H*F
      A5 = C + (U+V*F)*D
      GO TO 20
   10 A4 = (A+G)*F + H
      A5 = (F+U)*C + V*D
C EVALUATE NEW QUADRATIC COEFFICIENTS.
   20 B1 = -K(N)/P(NN)
      B2 = -(K(N-1)+B1*P(N))/P(NN)
      C1 = V*B2*A1
      C2 = B1*A7
      C3 = B1*B1*A3
      C4 = C1 - C2 - C3
      TEMP = A5 + B1*A4 - C4
      IF (TEMP.EQ.0.D0) GO TO 30
      UU = U - (U*(C3+C2)+V*(B1*A1+B2*A7))/TEMP
      VV = V*(1.+C4/TEMP)
      RETURN
C IF TYPE=3 THE QUADRATIC IS ZEROED
   30 UU = 0.D0
      VV = 0.D0
      RETURN
      END
      SUBROUTINE QUADSD(NN, U, V, P, Q, A, B)                           QUA   10
C DIVIDES P BY THE QUADRATIC  1,U,V  PLACING THE
C QUOTIENT IN Q AND THE REMAINDER IN A,B
      DOUBLE PRECISION P(NN), Q(NN), U, V, A, B, C
      INTEGER I
      B = P(1)
      Q(1) = B
      A = P(2) - U*B
      Q(2) = A
      DO 10 I=3,NN
        C = P(I) - U*A - V*B
        Q(I) = C
        B = A
        A = C
   10 CONTINUE
      RETURN
      END
      SUBROUTINE QUAD(A, B1, C, SR, SI, LR, LI)                         QUA   10
C CALCULATE THE ZEROS OF THE QUADRATIC A*Z**2+B1*Z+C.
C THE QUADRATIC FORMULA, MODIFIED TO AVOID
C OVERFLOW, IS USED TO FIND THE LARGER ZERO IF THE
C ZEROS ARE REAL AND BOTH ZEROS ARE COMPLEX.
C THE SMALLER REAL ZERO IS FOUND DIRECTLY FROM THE
C PRODUCT OF THE ZEROS C/A.
      DOUBLE PRECISION A, B1, C, SR, SI, LR, LI, B,
     * D, E, DABS, DSQRT
      IF (A.NE.0.D0) GO TO 20
      SR = 0.D0
      IF (B1.NE.0.D0) SR = -C/B1
      LR = 0.D0
   10 SI = 0.D0
      LI = 0.D0
      RETURN
   20 IF (C.NE.0.D0) GO TO 30
      SR = 0.D0
      LR = -B1/A
      GO TO 10
C COMPUTE DISCRIMINANT AVOIDING OVERFLOW
   30 B = B1/2.D0
      IF (DABS(B).LT.DABS(C)) GO TO 40
      E = 1.D0 - (A/B)*(C/B)
      D = DSQRT(DABS(E))*DABS(B)
      GO TO 50
   40 E = A
      IF (C.LT.0.D0) E = -A
      E = B*(B/DABS(C)) - E
      D = DSQRT(DABS(E))*DSQRT(DABS(C))
   50 IF (E.LT.0.D0) GO TO 60
C REAL ZEROS
      IF (B.GE.0.D0) D = -D
      LR = (-B+D)/A
      SR = 0.D0
      IF (LR.NE.0.D0) SR = (C/LR)/A
      GO TO 10
C COMPLEX CONJUGATE ZEROS
   60 SR = -B/A
      LR = SR
      SI = DABS(D/A)
      LI = -SI
      RETURN
      END