1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkGaussianSpatialFunction.h"
#include "itkMath.h"
int itkGaussianSpatialFunctionTest(int, char* [] )
{
// Change this parameter (and the positions, below) to work in higher or lower dimensions
const unsigned int Dimension = 3;
//---------Create and initialize a spatial function-----------
typedef itk::GaussianSpatialFunction<double,Dimension> FunctionType;
typedef FunctionType::ArrayType ArrayType;
typedef FunctionType::InputType InputType;
// Create and initialize a new sphere function
FunctionType::Pointer spatialFunction = FunctionType::New();
ArrayType mean;
mean[0]=13;
mean[1]=17;
mean[2]=19;
spatialFunction->SetMean( mean );
// Test the Get macros as well
ArrayType mean1 = spatialFunction->GetMean();
if( mean1 != mean )
{
return EXIT_FAILURE;
}
// FIXME : verify the return values...
ArrayType sigma;
sigma[0]=5;
sigma[1]=7;
sigma[2]=9;
spatialFunction->SetSigma( sigma );
// Test the Get macros as well
ArrayType sigma1 = spatialFunction->GetSigma();
if( sigma1 != sigma )
{
return EXIT_FAILURE;
}
// FIXME : verify the return values...
double scale1 = spatialFunction->GetScale();
if( std::fabs( scale1 - 1.0 ) > itk::Math::eps )
{
std::cerr << "Error in initial scale value" << std::endl;
return EXIT_FAILURE;
}
bool normalized1 = spatialFunction->GetNormalized();
if( normalized1 )
{
std::cerr << "Error in initial value of normalized" << std::endl;
return EXIT_FAILURE;
}
double scale2 = 19.0;
spatialFunction->SetScale( scale2 );
if( itk::Math::NotExactlyEquals(spatialFunction->GetScale(), scale2) )
{
std::cerr << "Error in Set/GetScale()" << std::endl;
return EXIT_FAILURE;
}
spatialFunction->SetScale( 1.0 );
spatialFunction->SetNormalized( true );
std::cout << "Gaussian spatial function created\n";
//----------------Test evaluation of funtion------------------
// We're going to evaluate it at the center of the Gaussian (10,10,10)
InputType point;
point[0] = mean[0];
point[1] = mean[1];
point[2] = mean[2];
std::cout << spatialFunction->GetNameOfClass() << std::endl;
spatialFunction->Print( std::cout );
double computedValueAtMean = spatialFunction->Evaluate( point );
std::cout << "Gaussian function value is " << computedValueAtMean << std::endl;
const double oneDimensionalFactor = std::sqrt( 2.0 * itk::Math::pi );
const double factor = oneDimensionalFactor * oneDimensionalFactor * oneDimensionalFactor;
double expectedValueAtMean = 1.0 / ( sigma[0]*sigma[1]*sigma[2] * factor );
std::cout << "expectedValueAtMean = " << expectedValueAtMean << std::endl;
std::cout << "computed value = " << computedValueAtMean << std::endl;
if( std::fabs( computedValueAtMean - expectedValueAtMean ) > itk::Math::eps )
{
std::cerr << "Error in computation of value at mean" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|