1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImage.h"
#include "itkVectorImage.h"
#include "itkRGBPixel.h"
#include "itkRGBAPixel.h"
#include "itkDiffusionTensor3D.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkMeasurementVectorTraits.h"
#include "itkStdStreamLogOutput.h"
#include "itkGaussianRandomSpatialNeighborSubsampler.h"
#include "itkPatchBasedDenoisingImageFilter.h"
template <typename ImageT>
int doDenoising(const std::string & inputFileName, const std::string & outputFileName,
const int numIterations, const int numThreads,
const int numToSample, const float kernelBandwidthMultiplicationFactor,
const std::string & noiseModel, const float noiseModelFidelityWeight)
{
typedef itk::ImageFileReader< ImageT > ReaderType;
typedef itk::PatchBasedDenoisingImageFilter<ImageT, ImageT> FilterType;
typedef itk::Statistics::GaussianRandomSpatialNeighborSubsampler<
typename FilterType::PatchSampleType, typename ImageT::RegionType> SamplerType;
typedef typename FilterType::OutputImageType OutputImageType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
// read the noisy image to be denoised
typename ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( inputFileName );
try
{
reader->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Problem encountered while reading image file : " << inputFileName << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// create filter and initialize
// give image to filter and run it
// get filter output and write to file
typename FilterType::Pointer filter = FilterType::New();
filter->SetInput(reader->GetOutput());
// patch radius is same for all dimensions of the image
const unsigned int patchRadius = 4;
filter->SetPatchRadius(patchRadius);
// instead of directly setting the weights, could also specify type
filter->UseSmoothDiscPatchWeightsOn();
filter->UseFastTensorComputationsOn();
// noise model to use
if (noiseModel == "GAUSSIAN")
{
filter->SetNoiseModel(FilterType::GAUSSIAN);
}
else if (noiseModel == "RICIAN")
{
filter->SetNoiseModel(FilterType::RICIAN);
}
else if (noiseModel == "POISSON")
{
filter->SetNoiseModel(FilterType::POISSON);
}
else
{
filter->SetNoiseModel(FilterType::NOMODEL);
}
// stepsize or weight for smoothing term
// Large stepsizes may cause instabilities.
filter->SetSmoothingWeight(1);
// stepsize or weight for fidelity term
// use a positive weight to prevent oversmoothing
// (penalizes deviations from noisy data based on a noise model)
filter->SetNoiseModelFidelityWeight(noiseModelFidelityWeight);
// number of iterations over the image of denoising
filter->SetNumberOfIterations(numIterations);
// number of threads to use in parallel
filter->SetNumberOfThreads(numThreads);
// sampling the image to find similar patches
typename SamplerType::Pointer sampler = SamplerType::New();
// variance (in physical units) for semi-local Gaussian sampling
sampler->SetVariance(400);
// rectangular window restricting the Gaussian sampling
sampler->SetRadius(50); // 2.5 * standard deviation
// number of random sample "patches" to use for computations
sampler->SetNumberOfResultsRequested(numToSample);
// Sampler can be complete neighborhood sampler, random neighborhood sampler,
// Gaussian sampler, etc.
filter->SetSampler(sampler);
// automatic estimation of the kernel bandwidth
filter->KernelBandwidthEstimationOn();
// update bandwidth every 'n' iterations
filter->SetKernelBandwidthUpdateFrequency(3);
// use 33% of the pixels for the sigma update calculation
filter->SetKernelBandwidthFractionPixelsForEstimation(0.20);
// multiplication factor modifying the automatically-estimated kernel sigma
filter->SetKernelBandwidthMultiplicationFactor(kernelBandwidthMultiplicationFactor);
// manually-selected Gaussian kernel sigma
// filter->DoKernelBandwidthEstimationOff();
// typename FilterType::RealArrayType gaussianKernelSigma;
// gaussianKernelSigma.SetSize(reader->GetOutput()->GetNumberOfComponentsPerPixel());
// gaussianKernelSigma.Fill(11);
// filter->SetGaussianKernelSigma (gaussianKernelSigma);
// denoise the image
std::cout << "Filter prior to update:\n";
filter->Print( std::cout );
try
{
filter->Update();
}
catch (itk::ExceptionObject & excp)
{
std::ostringstream itkmsg; \
itkmsg << "Error: In " __FILE__ ", line " << __LINE__ << "\n"
<< "Caught exception <" << excp
<< "> while running patch-based denoising image filter."
<< "\n\n";
::itk::OutputWindowDisplayWarningText(itkmsg.str().c_str());
return EXIT_FAILURE;
}
// write the denoised image to file
typename WriterType::Pointer writer = WriterType::New();
writer->SetFileName( outputFileName );
writer->SetInput( filter->GetOutput() );
std::cout << "Writing NumberOfComponents: "
<< filter->GetOutput()->GetNumberOfComponentsPerPixel()
<< " to file." << std::endl;
try
{
writer->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
int itkPatchBasedDenoisingImageFilterTest( int argc, char * argv [] )
{
if( argc < 3 )
{
std::cerr << "Missing command line arguments" << std::endl;
std::cerr << "Usage : " << argv[0]
<< " inputImageFileName outputImageFileName"
<< " numDimensions numComponents"
<< " [numIterations] [numThreads]"
<< " [numPatchesToSample] [kernelBandwidthMultiplicationFactor]"
<< " [noiseModel] [noiseModelFidelityWeight]"
<< std::endl;
return EXIT_FAILURE;
}
const std::string inFileName(argv[1]);
const std::string outFileName(argv[2]);
const unsigned int numDimensions = atoi(argv[3]);
const unsigned int numComponents = atoi(argv[4]);
unsigned int numIterations = 1;
if (argc > 5)
{
numIterations = atoi(argv[5]);
}
unsigned int numThreads = 1;
if (argc > 6)
{
numThreads = atoi(argv[6]);
}
unsigned int numToSample = 1000;
if (argc > 7)
{
numToSample = atoi(argv[7]);
}
float kernelBandwidthMultFactor = 1;
if (argc > 8)
{
kernelBandwidthMultFactor = atof(argv[8]);
}
std::vector< std::string > modelChoices;
modelChoices.push_back("GAUSSIAN");
modelChoices.push_back("RICIAN");
modelChoices.push_back("POISSON");
modelChoices.push_back("NOMODEL");
std::string noiseModel;
noiseModel = modelChoices[0];
float noiseModelFidelityWeight = 0.0;
if (argc > 9)
{
noiseModel = argv[9];
bool validChoice = false;
for (unsigned int ii = 0; ii < modelChoices.size(); ++ii)
{
if( noiseModel == modelChoices[ii])
{
validChoice = true;
}
}
if (!validChoice)
{
std::cerr << noiseModel << " is not a valid noise model choice. Please choose one of: ";
for (unsigned int ii = 0; ii < modelChoices.size(); ++ii)
{
std::cerr << modelChoices[ii] << " " << std::endl;
}
return EXIT_FAILURE;
}
if (argc > 10)
{
noiseModelFidelityWeight = atof(argv[10]);
}
else
{
std::cerr << "Must also specify a noise model fidelity weight when a noise model is specified."
<< std::endl;
return EXIT_FAILURE;
}
}
typedef float PixelComponentType;
//
typedef PixelComponentType OneComponentType;
typedef itk::RGBPixel< PixelComponentType > ThreeComponentType;
typedef itk::RGBAPixel< PixelComponentType > FourComponentType;
typedef itk::DiffusionTensor3D< PixelComponentType > SixComponentType;
//
typedef itk::Image< OneComponentType, 2 > OneComponent2DImage;
typedef itk::Image< OneComponentType, 3 > OneComponent3DImage;
//
// Will not compile due to issue with VectorImageToImageAdaptor
// wait for http://review.source.kitware.com/5572 to be resolved
// before testing these instantiations.
// typedef itk::VectorImage< PixelComponentType, 2 > TwoComponent2DImage;
// typedef itk::VectorImage< PixelComponentType, 3 > TwoComponent3DImage;
//
typedef itk::Image< ThreeComponentType, 2 > ThreeComponent2DImage;
typedef itk::Image< ThreeComponentType, 3 > ThreeComponent3DImage;
//
typedef itk::Image< FourComponentType, 2 > FourComponent2DImage;
typedef itk::Image< FourComponentType, 3 > FourComponent3DImage;
//
typedef itk::Image< SixComponentType, 2 > SixComponent2DImage;
typedef itk::Image< SixComponentType, 3 > SixComponent3DImage;
//
if (numComponents == 1 && numDimensions == 2)
{
return doDenoising<OneComponent2DImage>(inFileName, outFileName,
numIterations, numThreads,
numToSample, kernelBandwidthMultFactor,
noiseModel, noiseModelFidelityWeight);
}
// else if (numComponents == 2 && numDimensions == 2)
// {
// return doDenoising<TwoComponent2DImage>(inFileName, outFileName,
// numIterations, numThreads,
// numToSample, kernelBandwidthMultFactor,
// noiseModel, noiseModelFidelityWeight);
// }
else if (numComponents == 3 && numDimensions == 2)
{
return doDenoising<ThreeComponent2DImage>(inFileName, outFileName,
numIterations, numThreads,
numToSample, kernelBandwidthMultFactor,
noiseModel, noiseModelFidelityWeight);
}
else if (numComponents == 4 && numDimensions == 2)
{
return doDenoising<FourComponent2DImage>(inFileName, outFileName,
numIterations, numThreads,
numToSample, kernelBandwidthMultFactor,
noiseModel, noiseModelFidelityWeight);
}
else if (numComponents == 6 && numDimensions == 2)
{
return doDenoising<SixComponent2DImage>(inFileName, outFileName,
numIterations, numThreads,
numToSample, kernelBandwidthMultFactor,
noiseModel, noiseModelFidelityWeight);
}
//
else if (numComponents == 1 && numDimensions == 3)
{
return doDenoising<OneComponent3DImage>(inFileName, outFileName,
numIterations, numThreads,
numToSample, kernelBandwidthMultFactor,
noiseModel, noiseModelFidelityWeight);
}
// else if (numComponents == 2 && numDimensions == 3)
// {
// return doDenoising<TwoComponent3DImage>(inFileName, outFileName,
// numIterations, numThreads,
// numToSample, kernelBandwidthMultFactor,
// noiseModel, noiseModelFidelityWeight);
// }
else if (numComponents == 3 && numDimensions == 3)
{
return doDenoising<ThreeComponent3DImage>(inFileName, outFileName,
numIterations, numThreads,
numToSample, kernelBandwidthMultFactor,
noiseModel, noiseModelFidelityWeight);
}
else if (numComponents == 4 && numDimensions == 3)
{
return doDenoising<FourComponent3DImage>(inFileName, outFileName,
numIterations, numThreads,
numToSample, kernelBandwidthMultFactor,
noiseModel, noiseModelFidelityWeight);
}
else if (numComponents == 6 && numDimensions == 3)
{
return doDenoising<SixComponent3DImage>(inFileName, outFileName,
numIterations, numThreads,
numToSample, kernelBandwidthMultFactor,
noiseModel, noiseModelFidelityWeight);
}
else
{
std::cout << "Combination of "
<< numComponents << " components and "
<< numDimensions << " dimensions "
<< "isn't supported in this test driver."
<< std::endl;
return EXIT_FAILURE;
}
// shouldn't reach this point, return failure here to keep the compiler happy
return EXIT_FAILURE;
}
|