1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkSymmetricSecondRankTensor.h"
#include "itkSymmetricEigenAnalysisImageFilter.h"
int itkSymmetricEigenAnalysisImageFilterTest(int, char* [] )
{
// Define the dimension of the images
const unsigned int myDimension = 3;
// Define the symmetric tensor pixel type
typedef itk::SymmetricSecondRankTensor< float, myDimension > myTensorType;
// Declare the types of the images
typedef itk::Image< myTensorType, myDimension > myInputImageType;
// Define the type for storing the eigen-value
typedef itk::FixedArray< float, myDimension > myValueArray;
// Declare the types of the output images
typedef itk::Image< myValueArray, myDimension > myOutputImageType;
// Declare the type of the index to access images
typedef itk::Index<myDimension> myIndexType;
// Declare the type of the size
typedef itk::Size<myDimension> mySizeType;
// Declare the type of the Region
typedef itk::ImageRegion<myDimension> myRegionType;
// Create the image
myInputImageType::Pointer inputImage = myInputImageType::New();
// Define their size, and start index
mySizeType size;
size[0] = 8;
size[1] = 8;
size[2] = 8;
myIndexType start;
start.Fill(0);
myRegionType region;
region.SetIndex( start );
region.SetSize( size );
// Initialize Image A
inputImage->SetLargestPossibleRegion( region );
inputImage->SetBufferedRegion( region );
inputImage->SetRequestedRegion( region );
inputImage->Allocate();
// Declare Iterator type for the input image
typedef itk::ImageRegionIteratorWithIndex<
myInputImageType> myIteratorType;
// Create one iterator for the Input Image A (this is a light object)
myIteratorType it( inputImage, inputImage->GetRequestedRegion() );
myTensorType tensorValue;
tensorValue(0,0) = 19.0;
tensorValue(0,1) = 23.0;
tensorValue(0,2) = 29.0;
tensorValue(1,1) = 31.0;
tensorValue(1,2) = 37.0;
tensorValue(2,2) = 39.0;
it.GoToBegin();
// Initialize the content of Image A
while( !it.IsAtEnd() )
{
it.Set( tensorValue );
++it;
}
// Declare the type for the filter
typedef itk::SymmetricEigenAnalysisImageFilter<
myInputImageType,
myOutputImageType
> myFilterType;
// Create a Filter
myFilterType::Pointer filter = myFilterType::New();
filter->SetDimension( myTensorType::Dimension );
// Connect the input images
filter->SetInput( inputImage );
// Execute the filter
filter->Update();
filter->SetFunctor(filter->GetFunctor());
// Get the Smart Pointer to the Filter Output
// It is important to do it AFTER the filter is Updated
// Because the object connected to the output may be changed
// by another during GenerateData() call
myOutputImageType::Pointer outputImage = filter->GetOutput();
// Declare Iterator type for the output image
typedef itk::ImageRegionIteratorWithIndex<
myOutputImageType> myOutputIteratorType;
// Create an iterator for going through the output image
myOutputIteratorType itg( outputImage,
outputImage->GetRequestedRegion() );
// Print the content of the result image
std::cout << " Result " << std::endl;
itg.GoToBegin();
while( !itg.IsAtEnd() )
{
std::cout << itg.Get();
++itg;
}
// All objects should be automatically destroyed at this point
return EXIT_SUCCESS;
}
|