File: itkSymmetricEigenAnalysisImageFilterTest.cxx

package info (click to toggle)
insighttoolkit4 4.10.1-dfsg1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 416,780 kB
  • ctags: 104,347
  • sloc: cpp: 553,142; ansic: 142,389; fortran: 34,788; python: 16,392; lisp: 2,070; sh: 1,862; tcl: 993; java: 362; perl: 200; makefile: 111; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (143 lines) | stat: -rw-r--r-- 4,321 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkSymmetricSecondRankTensor.h"
#include "itkSymmetricEigenAnalysisImageFilter.h"


int itkSymmetricEigenAnalysisImageFilterTest(int, char* [] )
{

  // Define the dimension of the images
  const unsigned int myDimension = 3;

  // Define the symmetric tensor pixel type
  typedef itk::SymmetricSecondRankTensor< float, myDimension > myTensorType;

  // Declare the types of the images
  typedef itk::Image< myTensorType, myDimension >  myInputImageType;

  // Define the type for storing the eigen-value
  typedef itk::FixedArray< float, myDimension >  myValueArray;

  // Declare the types of the output images
  typedef itk::Image< myValueArray, myDimension >  myOutputImageType;

  // Declare the type of the index to access images
  typedef itk::Index<myDimension>             myIndexType;

  // Declare the type of the size
  typedef itk::Size<myDimension>              mySizeType;

  // Declare the type of the Region
  typedef itk::ImageRegion<myDimension>        myRegionType;

  // Create the image
  myInputImageType::Pointer inputImage  = myInputImageType::New();


  // Define their size, and start index
  mySizeType size;
  size[0] = 8;
  size[1] = 8;
  size[2] = 8;

  myIndexType start;
  start.Fill(0);

  myRegionType region;
  region.SetIndex( start );
  region.SetSize( size );

  // Initialize Image A
  inputImage->SetLargestPossibleRegion( region );
  inputImage->SetBufferedRegion( region );
  inputImage->SetRequestedRegion( region );
  inputImage->Allocate();

  // Declare Iterator type for the input image
  typedef itk::ImageRegionIteratorWithIndex<
                     myInputImageType>  myIteratorType;

  // Create one iterator for the Input Image A (this is a light object)
  myIteratorType it( inputImage, inputImage->GetRequestedRegion() );

  myTensorType tensorValue;

  tensorValue(0,0) = 19.0;
  tensorValue(0,1) = 23.0;
  tensorValue(0,2) = 29.0;
  tensorValue(1,1) = 31.0;
  tensorValue(1,2) = 37.0;
  tensorValue(2,2) = 39.0;

  it.GoToBegin();

  // Initialize the content of Image A
  while( !it.IsAtEnd() )
    {
    it.Set( tensorValue );
    ++it;
    }


  // Declare the type for the filter
  typedef itk::SymmetricEigenAnalysisImageFilter<
                                     myInputImageType,
                                     myOutputImageType
                                               >  myFilterType;
  // Create a  Filter
  myFilterType::Pointer filter = myFilterType::New();
  filter->SetDimension( myTensorType::Dimension );

  // Connect the input images
  filter->SetInput( inputImage );


  // Execute the filter
  filter->Update();
  filter->SetFunctor(filter->GetFunctor());

  // Get the Smart Pointer to the Filter Output
  // It is important to do it AFTER the filter is Updated
  // Because the object connected to the output may be changed
  // by another during GenerateData() call
  myOutputImageType::Pointer outputImage = filter->GetOutput();

  // Declare Iterator type for the output image
  typedef itk::ImageRegionIteratorWithIndex<
                                 myOutputImageType>  myOutputIteratorType;

  // Create an iterator for going through the output image
  myOutputIteratorType itg( outputImage,
                            outputImage->GetRequestedRegion() );

  //  Print the content of the result image
  std::cout << " Result " << std::endl;
  itg.GoToBegin();
  while( !itg.IsAtEnd() )
    {
    std::cout << itg.Get();
    ++itg;
    }


  // All objects should be automatically destroyed at this point
  return EXIT_SUCCESS;

}